Shell Puzzle: An Additional Piece Added to the Evolution of Turtles

Related Articles

Related Articles

The origin of turtles is among the most debated topics in evolutionary biology. In a recently published study by Senckenberg scientist Ingmar Werneburg, in cooperation with an international research team, refutes existing hypotheses and sheds a new light on the evolution of the skull architecture.

The results indicate a close link between skull evolution and the highly flexible neck of these armored reptiles.

In addition to their shell, turtles are characterized by their flexible necks and small heads. “Although turtles belong to the reptiles, their skulls differs markedly from those of other members of this group, which – together with their unique armored skeleton – makes it difficult to assess their phylogenetic origin,” explains PD Dr. Ingmar Werneburg of the ‘Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) an der Universität Tübingen’.

 

Fossils suggest that several modifications during turtle evolution drove the initially mobile skull to transform to a rigid structure. In this process, the temporal openings behind the eyes closed as well, forming a so-called anapsid skull, which is not found in any other living reptile.

At the same time, the animals developed a unique arrangement of their jaw muscles, comparable to a pulley system. “Until now, it was assumed that these modifications led to an increased bite force in turtles, and that this development constituted a functional adaptation to a modified feeding behavior,” adds Werneburg.

This hypothesis was now tested for the first time under biomechanical aspects by an international research team led by Werneburg. The scientist from Tübingen comments as follows: “To our surprise, the results do not show any support for an increased bite force – neither due to the skull’s rigidity nor caused by the rearranged jaw musculature.” However, the analyses reveal that the evolutionary innovations led to an optimized skull structure, which can withstand higher stress loads while requiring less bone material.

“We combined our new findings with the previous paleontological and anatomical knowledge, allowing us to develop a new scenario,” explains Werneburg. The key feature in this scenario is the close link between the evolution of the skull and the highly flexible neck. “We assume that the skull of modern turtles is the result of a complex process that has been taking place since the emergence of the shell.” On the one hand, the neck movement facilitates a general increase in the animal’s mobility, which counteracts its otherwise rigid body. On the other hand, the option of retracting the neck serves as an additional protective mechanism in dangerous situations.

Moreover, the modifications in the turtles’ skull may not only have led to an improved stress distribution but may also have paved the way for the evolution of new species. “The evolutionary potential for a novel skull architecture and longer, more flexible necks enabled the development of a larger diversity among turtles during and after the Jurassic period,” adds Werneburg in closing.

Senckenberg Research Institute and Natural History Museum

Header Image – Reconstruction of the turtle Proganochelys quenstedti at Naturkundemuseum Stuttgart. Foto: I. Werneburg

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Giant Sand Worm Discovery Proves Truth is Stranger Than Fiction

Simon Fraser University researchers have found evidence that large ambush-predatory worms--some as long as two metres--roamed the ocean floor near Taiwan over 20 million years ago.

Burial Practices Point to an Interconnected Early Medieval Europe

Early Medieval Europe is frequently viewed as a time of cultural stagnation, often given the misnomer of the 'Dark Ages'. However, analysis has revealed new ideas could spread rapidly as communities were interconnected, creating a surprisingly unified culture in Europe.

New Starfish-Like Fossil Reveals Evolution in Action

Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature.

Mars Crater Offers Window on Temperatures 3.5 Billion Years Ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

Early Humans Used Chopping Tools to Break Animal Bones & Consume the Bone Marrow

Researchers from the Sonia and Marco Nadler Institute of Archaeology at Tel Aviv University unraveled the function of flint tools known as 'chopping tools', found at the prehistoric site of Revadim, east of Ashdod.

50 Million-Year-Old Fossil Assassin Bug Has Unusually Well-Preserved Genitalia

The fossilized insect is tiny and its genital capsule, called a pygophore, is roughly the length of a grain of rice.

Dinosaur-Era Sea Lizard Had Teeth Like a Shark

New study identifies a bizarre new species suggesting that giant marine lizards thrived before the asteroid wiped them out 66 million years ago.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

Popular stories

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).

Vallum Aulium – Hadrian’s Wall

Hadrian’s Wall (Vallum Aulium) was a defensive fortification in Roman Britannia that ran 73 miles (116km) from Mais at the Solway Firth on the Irish Sea to the banks of the River Tyne at Segedunum at Wallsend in the North Sea.