Date:

Researchers explore ocean microbes’ role in climate effects

A new study shows that “hotspots” of nutrients surrounding phytoplankton — which are tiny marine algae producing approximately half of the oxygen we breathe every day — play an outsized role in the release of a gas involved in cloud formation and climate regulation.

The new research quantifies the way specific marine bacteria process a key chemical called dimethylsulfoniopropionate (DMSP), which is produced in enormous amounts by phytoplankton. This chemical plays a pivotal role in the way sulfur and carbon get consumed by microorganisms in the ocean and released into the atmosphere.

- Advertisement -

The work is reported in the journal Nature Communications, in a paper by MIT graduate student Cherry Gao, former MIT professor of civil and environmental engineering Roman Stocker (now a professor at ETH Zurich, in Switzerland), in collaboration with Jean-Baptiste Raina and Professor Justin Seymour of University of Technology Sydney in Australia, and four others.

More than a billion tons of DMSP is produced annually by microorganisms in the oceans, accounting for 10 percent of the carbon that gets taken up by phytoplankton — a major “sink” for carbon dioxide, without which the greenhouse gas would be building up even faster in the atmosphere. But exactly how this compound gets processed and how its different chemical pathways figure into global carbon and sulfur cycles had not been well-understood until now, Gao says.

“DMSP is a major nutrient source for bacteria,” she says. “It satisfies up to 95 percent of bacterial sulfur demand and up to 15 percent of bacterial carbon demand in the ocean. So given the ubiquity and the abundance of DMSP, we expect that these microbial processes would have a significant role in the global sulfur cycle.”

Gao and her co-workers genetically modified a marine bacterium called Ruegeria pomeroyi, causing it to fluoresce when one of two different pathways for processing DMSP was activated, allowing the relative expression of the processes to be analyzed under a variety of conditions.

- Advertisement -

One of the two pathways, called demethylation, produces carbon and sulfur based nutrients that the microbes can use to sustain their growth. The other pathway, called cleavage, produces a gas called dimethylsulfide (DMS), which Gao explains “is the compound that’s responsible for the smell of the sea. I actually smelled the ocean a lot in the lab when I was experimenting.”

DMS is the gas responsible for most of the biologically derived sulfur that enters the atmosphere from the oceans. Once in the atmosphere, sulfur compounds are a key source of condensation for water molecules, so their concentration in the air affects both rainfall patterns and the overall reflectivity of the atmosphere through cloud generation. Understanding the process responsible for much of that production could be important in multiple ways for refining climate models.

Those climate implications are “why we’re interested in knowing when bacteria decide to use the cleavage pathway versus the demethylation pathway,” in order to better understand how much of the important DMS gets produced under what conditions, Gao says. “This has been an open question for at least two decades.”

The new study found that the concentration of DMSP in the vicinity regulates which pathway the bacteria use. Below a certain concentration, demethylation was dominant, but above a level of about 10 micromoles, the cleavage process dominated.

“What was really surprising to us was, upon experimentation with the engineered bacteria, we found that the concentrations of DMSP in which the cleavage pathway dominates is higher than expected — orders of magnitude higher than the average concentration in the ocean,” she says.

That suggests that this process hardly takes place under typical ocean conditions, the researchers concluded. Rather, microscale “hotspots” of elevated DMSP concentration are probably responsible for a highly disproportionate amount of global DMS production. These microscale “hotspots” are areas surrounding certain phytoplankton cells where extremely high amounts of DMSP are present at about a thousand times greater than average oceanic concentration.

“We actually did a co-incubation experiment between the engineered bacteria and a DMSP-producing phytoplankton,” Gao says. The experiment showed “that indeed, bacteria increased their expression of the DMS-producing pathway, closer to the phytoplankton.”

The new analysis should help researchers understand key details of how these microscopic marine organisms, through their collective behavior, are affecting global-scale biogeochemical and climatic processes, the researchers say.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Header Image Credit – Prof. Gordon T. Taylor, Stony Brook University

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Celtic skull trepanation tool discovered in Mazovia

Archaeologists have discovered a rare Celtic tool used for skull trepanation during excavations at the Łysa Góra site in Mazovia, Poland.

Traces of prehistoric tombs and settlements excavated on Northern Herm

Herm is one of the Channel Islands and part of the Parish of St Peter Port in the Bailiwick of Guernsey.

Rare silver-tipped stylus among new discoveries at the “Gates of Heaven”

Archaeologists from the Saxony-Anhalt State Office for Monument Preservation and Archaeology (LDA) have unearthed a rare silver-tipped stylus during excavations at the Himmelpforte Monastery, otherwise known as the “Gates of Heaven”.

Epigraphists identify Ix Ch’ak Ch’een – the woman who ruled Cobá

Archaeologists and epigraphists have identified Ix Ch’ak Ch’een as a ruler of the ancient Maya city of Cobá during the 6th century AD.

New study shifts the dating of major Bronze Age events

A new study published in the journal PLOS ONE presents new evidence that the volcanic eruption of Minoan Thera (modern-day Santorini) occurred before the reign of Pharaoh Ahmose I, overturning long-held views of Bronze Age chronology.

Archaeologists uncover 5,500-year-old monumental landscape in Jordan

Archaeologists from the University of Copenhagen have uncovered a large 5,500-year-old monumental landscape at Murayghat in the rocky hills of central Jordan.

Major discoveries at Bremenium Roman Fort

Located in Northumberland, England, Bremenium was constructed around AD 80 to defend an extension of Dere Street, a Roman road running from York to Corbridge north of Hadrian's Wall.

Roman fort found on occupied Kerch Peninsula

Archaeologists from the South Bosporus Expedition have found a Roman fort during excavations on the occupied Kerch Peninsula, Crimea.