Date:

New protocol identifies fascinating quantum states

Nowadays, modern quantum simulators offer a wide range of possibilities to prepare and investigate complex quantum states.

- Advertisement -

They are realized with ultracold atoms in optical lattices, Rydberg atoms, trapped ions or superconducting quantum bits. A particularly fascinating class of quantum states are topological states of matter. David Thouless, Duncan Haldane and Michael Kosterlitz were awarded the Nobel Prize in Physics in 2016 for their theoretical discovery.

These states of matter are characterized by nonlocal quantum correlations and are particularly robust against local distortions that inevitably occur in experiments. “Identifying and characterizing such topological phases in experiments is a great challenge,” say Benoît Vermersch, Jinlong Yu and Andreas Elben from the Center for Quantum Physics at the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. “Topological phases cannot be identified by local measurements because of their special properties. We are therefore developing new measurement protocols that will enable experimental physicists to characterize these states in the laboratory”.

In recent years this has already been achieved for non-interacting systems. However, for interacting systems, which in the future could also be used as topological quantum computers, this has not been possible so far.

With random measurements to a definite result

- Advertisement -

In Science Advances, the physicists of Peter Zoller’s research group now propose measurement protocols that enable the measurement of so-called topological invariants. These mathematical expressions describe common properties of topological spaces and make it possible to fully identify interacting topological states with global symmetry in one-dimensional, bosonic systems.

“The idea of our method is to first prepare such a topological state in a quantum simulator. Now so-called random measurements are performed, and topological invariants are extracted from statistical correlations of these random measurements,” explains Andreas Elben.

The specific feature of this method is that although the topological invariants are highly complex, non-local correlation functions, they can still be extracted from statistical correlations of simple, local random measurements.

As with a method recently presented by the research group for comparing quantum states in computers or simulators, such random measurements are possible in experiments today. “Our protocols for measuring the topological invariants can therefore be directly applied in the existing experimental platforms,” says Benoît Vermersch.

UNIVERSITY OF INNSBRUCK

Header Image – A particularly fascinating class of quantum states are topological states of matter. Credit : IQOQI Innsbruck/Harald Ritsch

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Study identifies urban metropolis at X’baatún

Significant progress is being made in the recognition and documentation of X’baatún, a little-known Maya archaeological site located within Oxwatz Park in the ejido of Tekal de Venegas, Yucatán.

LiDAR reveals lost ancient landscape in Andean Chocó

Deep beneath the dense rainforest of the Andean Chocó, north-west of Quito, an ancient pre-Hispanic landscape is emerging using LiDAR (Light Detection and Ranging).

Pristine medieval gold ring discovered in Tønsberg

For most archaeologists, the chance to unearth a pristine artefact from the medieval period is a once-in-a-lifetime event.

Ancient purification bath found beneath Western Wall Plaza

A rock-cut mikveh from the late Second Temple period has been uncovered during excavations beneath Jerusalem’s Western Wall Plaza.

Rare Roman-Era enamelled fibula found near Grudziądz

A rare, enamelled fibula unearthed near Grudziądz is being hailed as only the second discovery of its kind in Poland.

War crimes of the Red Army unearthed near Duczów Małe

Archaeologists from POMOST – the Historical and Archaeological Research Laboratory – have uncovered physical evidence of war crimes committed by the Red Army during WWII.

Prehistoric tomb rediscovered on the Isle of Bute

An early Bronze Age tomb has been rediscovered on the Isle of Bute, an island in the Firth of Clyde in Scotland.

Flail-type weapon associated with Battle of Grunwald discovered near Gietrzwałd

A flail type weapon known as a kiścień has been discovered by detectorists from the Society of Friends of Olsztynek - Exploration Section "Tannenberg".