Date:

New protocol identifies fascinating quantum states

Nowadays, modern quantum simulators offer a wide range of possibilities to prepare and investigate complex quantum states.

They are realized with ultracold atoms in optical lattices, Rydberg atoms, trapped ions or superconducting quantum bits. A particularly fascinating class of quantum states are topological states of matter. David Thouless, Duncan Haldane and Michael Kosterlitz were awarded the Nobel Prize in Physics in 2016 for their theoretical discovery.

These states of matter are characterized by nonlocal quantum correlations and are particularly robust against local distortions that inevitably occur in experiments. “Identifying and characterizing such topological phases in experiments is a great challenge,” say Benoît Vermersch, Jinlong Yu and Andreas Elben from the Center for Quantum Physics at the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. “Topological phases cannot be identified by local measurements because of their special properties. We are therefore developing new measurement protocols that will enable experimental physicists to characterize these states in the laboratory”.

- Advertisement -

In recent years this has already been achieved for non-interacting systems. However, for interacting systems, which in the future could also be used as topological quantum computers, this has not been possible so far.

With random measurements to a definite result

In Science Advances, the physicists of Peter Zoller’s research group now propose measurement protocols that enable the measurement of so-called topological invariants. These mathematical expressions describe common properties of topological spaces and make it possible to fully identify interacting topological states with global symmetry in one-dimensional, bosonic systems.

“The idea of our method is to first prepare such a topological state in a quantum simulator. Now so-called random measurements are performed, and topological invariants are extracted from statistical correlations of these random measurements,” explains Andreas Elben.

The specific feature of this method is that although the topological invariants are highly complex, non-local correlation functions, they can still be extracted from statistical correlations of simple, local random measurements.

As with a method recently presented by the research group for comparing quantum states in computers or simulators, such random measurements are possible in experiments today. “Our protocols for measuring the topological invariants can therefore be directly applied in the existing experimental platforms,” says Benoît Vermersch.

UNIVERSITY OF INNSBRUCK

Header Image – A particularly fascinating class of quantum states are topological states of matter. Credit : IQOQI Innsbruck/Harald Ritsch

- Advertisement -
Mark Milligan
Mark Milligan
Mark Milligan is an award winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education and the BCA Medal of Honour.

Mobile Application

spot_img

Related Articles

Prison bakery for enslaved people found in Roman Pompeii

Archaeologists have uncovered a Prison bakery during recent excavations in Pompeii.

Baboons in Ancient Egypt were raised in captivity before being mummified

In a new study published in the open-access journal PLOS ONE, researchers examined a collection of baboon mummies from the ancient Egyptian site of Gabbanat el-Qurud, the so-called Valley of the Monkeys on the west bank of Luxor.

Archaeologists find 22 mummified burials in Peru

A Polish-Peruvian team of archaeologists have uncovered 22 mummified burials in Barranca, Peru.

Oldest prehistoric fortress found in remote Siberia

An international team, led by archaeologists from Freie Universität Berlin has uncovered an ancient prehistoric fortress in a remote region of Siberia known as Amnya.

Top 10 archaeological discoveries of 2023

The field of archaeology has been continuously evolving in 2023, making significant strides in uncovering new historical findings, preserving cultural heritage, and employing innovative technologies to study the past.

War in Ukraine sees destruction of cultural heritage not witnessed since WW2

The full-scale Russian invasion of Ukraine on 24 February 2022 has resulted in a significant loss of human lives and the national and international displacement of many Ukrainian people.

Archaeologists find five Bronze Age axes in the forests of Kociewie

According to an announcement by the Pomeranian Provincial Conservator of Monuments, archaeologists have discovered five Bronze Age axes in Starogard Forest District, located in Kociewie, Poland.

Origins of English Christmas traditions

Christmas embodies a tapestry of ritual traditions and customs shared by many countries and cultures. Some hearken back to ancient times, while others represent more recent innovations.