New high-energy-density physics research provides insights about the universe

Related Articles

Related Articles

Atoms and molecules behave very differently at extreme temperatures and pressures. Although such extreme matter doesn’t exist naturally on the earth, it exists in abundance in the universe, especially in the deep interiors of planets and stars.

Understanding how atoms react under high-pressure conditions–a field known as high-energy-density physics (HEDP)–gives scientists valuable insights into the fields of planetary science, astrophysics, fusion energy, and national security.

One important question in the field of HED science is how matter under high-pressure conditions might emit or absorb radiation in ways that are different from our traditional understanding.

 

In a paper published in Nature Communications, Suxing Hu, a distinguished scientist and group leader of the HEDP Theory Group at the University of Rochester Laboratory for Laser Energetics (LLE), together with colleagues from the LLE and France, has applied physics theory and calculations to predict the presence of two new phenomena–interspecies radiative transition (IRT) and the breakdown of dipole selection rule–in the transport of radiation in atoms and molecules under HEDP conditions. The research enhances an understanding of HEDP and could lead to more information about how stars and other astrophysical objects evolve in the universe.

WHAT IS INTERSPECIES RADIATIVE TRANSITION (IRT)?

Radiative transition is a physics process happening inside atoms and molecules, in which their electron or electrons can “jump” from different energy levels by either radiating/emitting or absorbing a photon. Scientists find that, for matter in our everyday life, such radiative transitions mostly happen within each individual atom or molecule; the electron does its jumping between energy levels belonging to the single atom or molecule, and the jumping does not typically occur between different atoms and molecules.

However, Hu and his colleagues predict that when atoms and molecules are placed under HED conditions, and are squeezed so tightly that they become very close to each other, radiative transitions can involve neighboring atoms and molecules.

“Namely, the electrons can now jump from one atom’s energy levels to those of other neighboring atoms,” Hu says.

WHAT IS THE DIPOLE SELECTION RULE?

Electrons inside an atom have specific symmetries. For example, “s-wave electrons” are always spherically symmetric, meaning they look like a ball, with the nucleus located in the atomic center; “p-wave electrons,” on the other hand, look like dumbbells. D-waves and other electron states have more complicated shapes. Radiative transitions will mostly occur when the electron jumping follows the so-called dipole selection rule, in which the jumping electron changes its shape from s-wave to p-wave, from p-wave to d-wave, etc.

Under normal, non-extreme conditions, Hu says, “one hardly sees electrons jumping among the same shapes, from s-wave to s-wave and from p-wave to p-wave, by emitting or absorbing photons.”

However, as Hu and his colleagues found, when materials are squeezed so tightly into the exotic HED state, the dipole selection rule is often broken down.

“Under such extreme conditions found in the center of stars and classes of laboratory fusion experiments, non-dipole x-ray emissions and absorptions can occur, which was never imagined before,” Hu says.

USING SUPERCOMPUTERS TO STUDY HEDP

The researchers used supercomputers at both the University of Rochester’s Center for Integrated Research Computing (CIRC) and at the LLE to conduct their calculations.

“Thanks to the tremendous advances in high-energy laser and pulsed-power technologies, ‘bringing stars to the Earth’ has become reality for the past decade or two,” Hu says.

Hu and his colleagues performed their research using the density-functional theory (DFT) calculation, which offers a quantum mechanical description of the bonds between atoms and molecules in complex systems. The DFT method was first described in the 1960s, and was the subject of the 1998 Nobel Prize in Chemistry. DFT calculations have been continually improved since. One such improvement to enable DFT calculations to involve core electrons was made by Valentin Karasev, a scientist at the LLE and a co-author of the paper.

The results indicate there are new emission/absorption lines appearing in the x-ray spectra of these extreme matter systems, which are from the previously-unknown channels of IRT and the breakdown of dipole selection rule.

Hu and Philip Nilson, a senior scientist at the LLE and co-author of the paper, are currently planning future experiments that will involve testing these new theoretical predictions at the OMEGA laser facility at the LLE. The facility lets users create exotic HED conditions in nanosecond timescales, allowing scientists to probe the unique behaviors of matters at extreme conditions.

“If proved to be true by experiments, these new discoveries will profoundly change how radiation transport is currently treated in exotic HED materials,” Hu says. “These DFT-predicted new emission and absorption channels have never been considered so far in textbooks.”

UNIVERSITY OF ROCHESTER

Header Image – Public Domain

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Camulodunum – The First Capital of Britannia

Camulodunum was a Roman city and the first capital of the Roman province of Britannia, in what is now the present-day city of Colchester in Essex, England.

African Crocodiles Lived in Spain Six Million Years Ago

Millions of years ago, several species of crocodiles of different genera and characteristics inhabited Europe and sometimes even coexisted.

Bat-Winged Dinosaurs That Could Glide

Despite having bat-like wings, two small dinosaurs, Yi and Ambopteryx, struggled to fly, only managing to glide clumsily between the trees where they lived, according to a new study led by an international team of researchers, including McGill University Professor Hans Larsson.

Ancient Maya Built Sophisticated Water Filters

Ancient Maya in the once-bustling city of Tikal built sophisticated water filters using natural materials they imported from miles away, according to the University of Cincinnati.

New Clues Revealed About Clovis People

There is much debate surrounding the age of the Clovis - a prehistoric culture named for stone tools found near Clovis, New Mexico in the early 1930s - who once occupied North America during the end of the last Ice Age.

Cognitive Elements of Language Have Existed for 40 Million Years

Humans are not the only beings that can identify rules in complex language-like constructions - monkeys and great apes can do so, too, a study at the University of Zurich has shown.

Bronze Age Herders Were Less Mobile Than Previously Thought

Bronze Age pastoralists in what is now southern Russia apparently covered shorter distances than previously thought.

Legio IX Hispana – The Lost Roman Legion

One of the most debated mysteries from the Roman period involves the disappearance of the Legio IX Hispana, a legion of the Imperial Roman Army that supposedly vanished sometime after AD 120.

Popular stories

Legio IX Hispana – The Lost Roman Legion

One of the most debated mysteries from the Roman period involves the disappearance of the Legio IX Hispana, a legion of the Imperial Roman Army that supposedly vanished sometime after AD 120.

The Secret Hellfire Club and the Hellfire Caves

The Hellfire Club was an exclusive membership-based organisation for high-society rakes, that was first founded in London in 1718, by Philip, Duke of Wharton, and several of society's elites.

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.