Date:

New discovery helps close the gap towards optically-controlled quantum computation

Scientists at Ames Laboratory, Brookhaven National Laboratory, and the University of Alabama Birmingham have discovered a light-induced switching mechanism in a Dirac semimetal.

The mechanism establishes a new way to control the topological material, driven by back-and-forth motion of atoms and electrons, which will enable topological transistor and quantum computation using light waves.

- Advertisement -

Just like today’s transistors and photodiodes replaced vacuum tubes over half a century ago, scientists are searching for a similar leap forward in design principles and novel materials in order to achieve quantum computing capabilities. Current computation capacity faces tremendous challenges in terms of complexity, power consumption, and speed; to exceed the physical limits reached as electronics and chips become hotter and faster, bigger advances are needed. Particularly at small scales, such issues have become major obstacles to improving performance.

“Light wave topological engineering seeks to overcome all of these challenges by driving quantum periodic motion to guide electrons and atoms via new degrees of freedom, i.e., topology, and induce transitions without heating at unprecedented terahertz frequencies, defined as one trillion cycles per second, clock rates,” said Jigang Wang, a senior scientist at Ames Laboratory and professor of physics at Iowa State University. “This new coherent control principle is in stark contrast to any equilibrium tuning methods used so far, such as electric, magnetic and strain fields, which have much slower speeds and higher energy losses.”

Wide-scale adoption of new computational principles, such as quantum computing, requires building devices in which fragile quantum states are protected from their noisy environments. One approach is through the development of topological quantum computation, in which qubits are based on “symmetry-protected” quasiparticles that are immune to noise.

However, scientists who study these topological materials face a challenge–how to establish and maintain control of these unique quantum behaviors in a way that makes applications like quantum computing possible. In this experiment, Wang and his colleagues demonstrated that control by using light to steer quantum states in a Dirac semimetal, an exotic material that exhibits extreme sensitivity due to its proximity to a broad range of topological phases.

- Advertisement -

“We achieved this by applying a new light-quantum-control principle known as mode-selective Raman phonon coherent oscillations–driving periodic motions of atoms about the equilibrium position using short light pulses,” says Ilias Perakis, professor of physics and chair at the University of Alabama at Birmingham. “These driven quantum fluctuations induce transitions between electronic states with different gaps and topological orders.”

An analogy of this kind of dynamic switching is the periodically driven Kapitza’s pendulum, which can transition to an inverted yet stable position when high-frequency vibration is applied. The researcher’s work shows that this classical control principle – driving materials to a new stable condition not found normally – is surprisingly applicable to a broad range of topological phases and quantum phase transitions.

“Our work opens a new arena of light wave topological electronics and phase transitions controlled by quantum coherence,” says Qiang Li, Group leader of the Brookhaven National Laboratory’s Advanced Energy Materials Group. “This will be useful in the development of future quantum computing strategies and electronics with high speed and low energy consumption.”

The spectroscopy and data analysis were performed at Ames Laboratory. Model building and analysis were partially performed at the University of Alabama, Birmingham. Sample development and magneto-transport measurements were performed at Brookhaven National Laboratory. Density functional calculations were supported by the Center for the Advancement of Topological Semimetals, a DOE Energy Frontier Research Center at Ames Laboratory.

DOE/AMES LABORATORY

Header Image – Scientists who study topological materials face a challenge — how to establish and maintain control of these unique quantum behaviors in a way that makes applications like quantum computing possible. In this experiment, Ames Laboratory Scientist Jigang Wang and his colleagues demonstrated that control by using light to steer quantum states in a Dirac semimetal. Credit : US Department of Energy, Ames Laboratory

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Underwater scans reveal lost submerged landscape

Researchers from the Life on the Edge project, a collaboration between the University of Bradford and the University of Split, has revealed a lost submerged landscape off the coast of Croatia using underwater scans.

Buried L-shaped structure and anomalies detected near Giza Pyramids

A geophysical study by archaeologists from the Higashi Nippon International University, Tohoku University, and the National Research Institute of Astronomy and Geophysics (NRIAG), have detected an L-shaped structure and several anomalies near the Giza Pyramids using geophysics.

Archaeologists search for traces of the “birthplace of Texas”

As part of a $51 million project, archaeologists have conducted a search for traces of Washington-on-the-Brazos, also known as the “birthplace of Texas”.

Archaeologists find moated medieval windmill

Archaeologists from MOLA (Museum of London Archaeology) have uncovered a moated medieval windmill during construction works of the National Highways A428 Black Cat to Caxton Gibbet improvement scheme in Bedfordshire, England.

Archaeologists find preserved Bronze Age wooden well

Archaeologists from Oxford Archaeology have uncovered a well-preserved Bronze Age wooden well in Oxfordshire, England.

Bronze Age treasures stolen from Ely Museum

Thieves have broken into Ely Museum and stolen historical treasures dating from the Bronze Age.

Dune restoration project uncovers intact WWII bunkers

A restoration project to remove invasive plants from dunes in the Heist Willemspark, Belgium, has led to the discovery of three intact WWII bunkers.

Recent findings shed light on the “Lost Colony” of Roanoke

Ongoing excavations by archaeologists from The First Colony Foundation have revealed new findings on the historical narrative of the "Lost Colony" of Roanoke.