Date:

Astronomers could spot life signs orbiting long-dead stars

The next generation of powerful Earth- and space-based telescopes will be able to hunt distant solar systems for evidence of life on Earth-like exoplanets – particularly those that chaperone burned-out stars known as white dwarfs.

The chemical properties of those far-off worlds could indicate that life exists there. To help future scientists make sense of what their telescopes are showing them, Cornell University astronomers have developed a spectral field guide for these rocky worlds.

- Advertisement -

“We show what the spectral fingerprints could be and what forthcoming space-based and large terrestrial telescopes can look out for,” said Thea Kozakis, doctoral candidate in astronomy, who conducts her research at Cornell’s Carl Sagan Institute. Kozakis is lead author of “High-resolution Spectra and Biosignatures of Earth-like Planets Transiting White Dwarfs,” published in Astrophysical Journal Letters.

In just a few years, astronomers – using tools such as the Extremely Large Telescope, currently under construction in northern Chile’s Atacama Desert, and the James Webb Space Telescope, scheduled to launch in 2021 – will be able to search for life on exoplanets.

“Rocky planets around white dwarfs are intriguing candidates to characterize because their hosts are not much bigger than Earth-size planets,” said Lisa Kaltenegger, associate professor of astronomy in the College of Arts and Sciences and director of the Carl Sagan Institute.

The trick is to catch an exoplanet’s quick crossing in front of a white dwarf, a small, dense star that has exhausted its energy.

- Advertisement -

“We are hoping for and looking for that kind of transit,” Kozakis said. “If we observe a transit of that kind of planet, scientists can find out what is in its atmosphere, refer back to this paper, match it to spectral fingerprints and look for signs of life. Publishing this kind of guide allows observers to know what to look for.”

Kozakis, Kaltenegger and Zifan Lin assembled the spectral models for different atmospheres at different temperatures to create a template for possible biosignatures.

Chasing down these planets in the habitable zone of white dwarf systems is challenging, the researchers said.

“We wanted to know if light from a white dwarf – a long-dead star – would allow us to spot life in a planet’s atmosphere if it were there,” Kaltenegger said.

This paper indicates that astronomers should be able to see spectral biosignatures – such as methane in combination with ozone or nitrous oxide – “if those signs of life are present,” said Kaltenegger, who said this research expands scientific databases for finding spectral signs of life on exoplanets to forgotten star systems.

“If we would find signs of life on planets orbiting under the light of long-dead stars,” she said, “the next intriguing question would be whether life survived the star’s death or started all over again – a second genesis, if you will.”

CORNELL UNIVERSITY

Header Image – Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists investigate sacred Piedra Letra monument

Archaeologists from the National Institute of Anthropology and History (INAH) have conducted a study of Piedra Letra, located on a hill overlooking Huehuetónoc in the Mexican state of Guerrero.

Monument linked to Iberian star mythology discovered in Jódar

Archaeologists from the Research Institute for Iberian Archaeology (IAI) at the University of Jaén (UJA) have discovered a monument connected to the sun and other celestial bodies within Iberian mythology.

Project is restoring Costa Rica’s mysterious stone spheres

A joint team of specialists from Costa Rica and Mexico are restoring three stone spheres at the Finca 6 Museum Site in Palmar de Osa.

Inscription sheds light on First Emperor’s quest for immortality

China’s First Emperor, Qin Shi Huang, was born in 259 BC in Handan, the capital of Zhao. He was originally named Ying Zheng, or Zhao Zheng, with ‘Zheng’ drawn from Zhengyue, the first month of the Chinese lunar calendar.

Artefacts from Battle of Dubienka unearthed near Uchanie

On July 18th, 1792, Polish forces under General Tadeusz Kościuszko clashed with Russian troops in what became one of the defining engagements of the Polish-Russian War.

Submerged port discovery could lead to Cleopatra’s lost tomb

Archaeologists have discovered a submerged ancient port near the ruins of the Taposiris Magna temple complex west of Alexandria, Egypt.

Archaeologists begin landmark study of Dzhetyasar culture settlements

Archaeologists from the Margulan Institute of Archaeology and the German Institute of Archaeology are conducting the first ever large-scale study of Dzhetyasar culture sites in Kazakhstan.

Study reveals arsenical bronze production during Egypt’s Middle Kingdom

A new open-access study published in Archaeometry unveils the first direct evidence of arsenical bronze production on Elephantine Island, Aswan, dating to Egypt’s Middle Kingdom (c. 2000–1650 BCE).