Date:

Astronomers capture rare images of planet-forming disks around stars

An international team of astronomers has captured fifteen images of the inner rims of planet-forming disks located hundreds of light years away.

These disks of dust and gas, similar in shape to a music record, form around young stars. The images shed new light on how planetary systems are formed. They were published in the journal Astronomy & Astrophysics.

- Advertisement -

To understand how planetary systems, including our own, take shape, you have to study their origins. Planet-forming or protoplanetary disks are formed in unison with the star they surround. The dust grains in the disks can grow into larger bodies, which eventually leads to the formation of planets. Rocky planets like the Earth are believed to form in the inner regions of protoplanetary disks, less than five astronomical units (five times the Earth-Sun distance) from the star around which the disk has formed.

Before this new study, several pictures of these disks had been taken with the largest single-mirror telescopes, but these cannot capture their finest details. “In these pictures, the regions close to the star, where rocky planets form, are covered by only few pixels,” says lead author Jacques Kluska from KU Leuven in Belgium. “We needed to visualize these details to be able to identify patterns that might betray planet formation and to characterize the properties of the disks.” This required a completely different observation technique. “I’m thrilled that we now for the first time have fifteen of these images,” Kluska continued.

Image reconstruction

Kluska and his colleagues created the images at the European Southern Observatory (ESO) in Chile by using a technique called infrared interferometry. Using ESO’s PIONIER instrument, they combined the light collected by four telescopes at the Very Large Telescope observatory to capture the disks in detail. However, this technique does not deliver an image of the observed source. The details of the disks needed to be recovered with a mathematical reconstruction technique. This technique is similar to how the first image of a black hole was captured. “We had to remove the light of the star, as it hindered the level of detail we could see in the disks”, Kluska explains.

- Advertisement -

“Distinguishing details at the scale of the orbits of rocky planets like Earth or Jupiter (as you can see in the images) — a fraction of the Earth-Sun distance — is equivalent to being able to see a human on the Moon, or to distinguish a hair at a 10 km distance,” notes Jean-Philippe Berger of the Université Grenoble-Alpes, who as principal investigator was in charge of the work with the PIONIER instrument. “Infrared interferometry is becoming routinely used to uncover the tiniest details of astronomical objects. Combining this technique with advanced mathematics finally allows us to turn the results of these observations into images.”

Irregularities

Some findings immediately stand out from the images. “You can see that some spots are brighter or less bright, like in the images above: this hints at processes that can lead to planet formation. For example: there could be instabilities in the disk that can lead to vortices where the disk accumulates grains of space dust that can grow and evolve into a planet.”

The team will do additional research to identify what might lie behind these irregularities. Kluska will also do new observations to get even more detail and to directly witness planet formation in the regions within the disks that lie close to the star. Additionally, Kluska is heading a team that has started to study 11 disks around other, older types of stars also surrounded by disks of dust, since it is thought these might also sprout planets.

KU LEUVEN

Header Image – The fifteen images of protoplanetary disks, captured with ESO’s Very Large Telescope Interferometer. Credit : Jacques Kluska et al.

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.

Evidence of lost Celtiberian city beneath Borobia 

The rediscovery of a funerary stele has provided new evidence of a lost Celtiberian City beneath the municipality of Borobia in the province of Soria, Spain.

Viking Age grave unearthed in Bjugn stuns archaeologists

A routine day of metal detecting led into one of Norway’s most captivating archaeological discoveries in years.

Ornately decorated medieval spears found in Polish lake

Underwater archaeologists from Nicolaus Copernicus University have uncovered four remarkably well-preserved medieval spears in the waters around Ostrów Lednicki, an island in the southern section of Lake Lednica in Poland.