Date:

The origin of massive stars

This scene of stellar creation, captured by the NASA/ESA Hubble Space Telescope, sits near the outskirts of the famous Tarantula Nebula.

This cloud of gas and dust, as well as the many young and massive stars surrounding it, is the perfect laboratory to study the origin of massive stars.

- Advertisement -

The bright pink cloud and the young stars surrounding it in this image taken with the NASA/ESA Hubble Space Telescope have the uninspiring name LHA 120-N 150. This region of space is located on the outskirts of the Tarantula Nebula, which is the largest known stellar nursery in the local Universe. The nebula is situated over 160 000 light-years away in the Large Magellanic Cloud, a neighbouring irregular dwarf galaxy that orbits the Milky Way.

The Large Magellanic Cloud has had one or more close encounters in the past, possibly with the Small Magellanic Cloud. These interactions have caused an episode of energetic star formation in our tiny neighbour — part of which is visible as the Tarantula Nebula.

Also known as 30 Doradus or NGC 2070, the Tarantula Nebula owes its name to the arrangement of bright patches that somewhat resemble the legs of a tarantula. It measures nearly 1000 light-years across. Its proximity, the favourable inclination of the Large Magellanic Cloud, and the absence of intervening dust make the Tarantula Nebula one of the best laboratories in which to study the formation of stars, in particular massive stars. This nebula has an exceptionally high concentration of massive stars, often referred to as super star clusters.

This image shows a region of space called LHA 120-N150. It is a substructure of the gigantic Tarantula Nebula. The latter is the largest known stellar nursery in the local Universe. The nebula is situated more than 160 000 light-years away in the Large Magellanic Cloud, a neighbouring dwarf irregular galaxy that orbits the Milky Way. Credit : ESA/Hubble, NASA, I. Stephens

Astronomers have studied LHA 120-N 150 to learn more about the environment in which massive stars form. Theoretical models of the formation of massive stars suggest that they should form within clusters of stars; but observations indicate that up to ten percent of them also formed in isolation. The giant Tarantula Nebula with its numerous substructures is the perfect laboratory in which to resolve this puzzle as in it massive stars can be found both as members of clusters and in isolation.

- Advertisement -

With the help of Hubble, astronomers try to find out whether the isolated stars visible in the nebula truly formed alone or just moved away from their stellar siblings. However, such a study is not an easy task; young stars, before they are fully formed — especially massive ones — look very similar to dense clumps of dust.

This ground-based view of the Tarantula Nebula shows the nebula in its entirety. It is the brightest region of star formation in the local Universe. Hubble’s field of view covers just a tiny spot in the upper-right quadrant of this image, though it reveals detail invisible here, including a supernova remnant.Credit : NASA, ESA, Digitized Sky Survey 2. Acknowledgement: Davide De Martin

LHA 120-N 150 contains several dozen of these objects. They are a mix of unclassified sources — some probably young stellar objects and others probably dust clumps. Only detailed analysis and observations will reveal their true nature and that will help to finally solve the unanswered question of the origin of massive stars.

Hubble has observed the Tarantula Nebula and its substructures in the past — always being interested in the formation and evolution of stars.

ESA/HUBBLE INFORMATION CENTRE

Header Image – Public Domain

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Labyrinthine structure discovered from the Minoan civilisation

Archaeologists have discovered a monumental labyrinthine structure on the summit of Papoura Hill in Crete.

Dragon sculpture found on the Jiankou section of the Great Wall of China

Archaeologists conducting restoration works on the Jiankou section of the Great Wall of China have discovered an ornate dragon sculpture.

Waters at Roman Bath may have super healing properties

A new study, published in the Microbe journal, has uncovered a diverse array of microorganisms in the geothermal waters at Roman Bath that may have super healing properties.

9,000-year-old Neolithic stone mask unveiled

A rare stone mask from the Neolithic period has been unveiled for the first time by the Israel Museum in Jerusalem.

Archaeologists recover two medieval grave slabs from submerged shipwreck

Underwater archaeologists from Bournemouth University have recovered two medieval grave slabs from a shipwreck off the coast of Dorset, England.

Study confirms palace of King Ghezo was site of voodoo blood rituals

A study, published in the journal Proteomics, presents new evidence to suggest that voodoo blood rituals were performed at the palace of King Ghezo.

Archaeologists search for home of infamous Tower of London prisoner

A team of archaeologists are searching for the home of Sir Arthur Haselrig, a leader of the Parliamentary opposition to Charles I, and whose attempted arrest sparked the English Civil War.

Tartessian plaque depicting warrior scenes found near Guareña

Archaeologists from the Institute of Archaeology of Mérida (IAM) and the CSIC have uncovered a slate plaque depicting warrior scenes at the Casas del Turuñuelo archaeological site.