Date:

Mystery solved! We finally understand the origin of the colours in the first colour photographs

A palette of colours on a silver plate: that is what the world’s first colour photograph looks like. It was taken by French physicist Edmond Becquerel in 1848. His process was empirical, never explained, and quickly abandoned.

A team at the Centre de recherche sur la conservation (CNRS/Muséum National d’Histoire Naturelle/Ministère de la Culture) has now shone a light on this, in collaboration with the SOLEIL synchrotron and the Laboratoire de Physique des Solides (CNRS/Université Paris-Saclay). The colours obtained by Edmond Becquerel were due to the presence of metallic silver nanoparticles, according to their study published on 30 March 2020 in Angewandte Chemie International Edition.

- Advertisement -

In 1848, in the Muséum d’Histoire Naturelle in Paris, Edmond Becquerel managed to produce a colour photograph of the solar spectrum. These photographs, which he called “photochromatic images”, are considered to be the world’s first colour photographs. Few of these have survived1 because they are light-sensitive and because very few were produced in the first place. It took the introduction of other processes2 for colour photography to become popular in society.

For more than 170 years, the nature of these colours has been debated in the scientific community, without resolution. Now we know the answer, thanks to a team at the Centre de recherche sur la conservation (CNRS/Muséum National d’Histoire Naturelle/Ministère de la Culture) in collaboration with the SOLEIL synchrotron and the Laboratoire de Physique des Solides (CNRS/Université Paris-Saclay). After having reproduced Edmond Becquerel’s process to make samples of different colours, the team started by re-examining 19th century hypotheses in light of 21st century tools. If the colours were due to pigments formed during the reaction with light, we should have seen variations in chemical composition from one colour to another,which no spectroscopy method has shown. If they were the result of interference, like the shades of some butterflies, the coloured surface should have shown regular microstructures about the size of the wavelength of the colour in question. Yet no periodic structure was observed using electron microscopy.

However, when the coloured plates were examined, metallic silver nanoparticles were revealed in the matrix made of silver chloride grains — and the distributions of sizes and locations of these nanoparticles vary according to colour. The scientists assume that according to the light’s colour (and therefore its energy), the nanoparticles present in the sensitised plate reorganise: some fragment and others coalesce. The new configuration gives the material the ability to absorb all colours of light, with the exception of the colour that caused it: and therefore that is the colour that we see. Nanoparticles having properties related to colour is a phenomenon known to physicists as surface plasmons3, electron vibrations (here, those of the metallic silver nanoparticles) that propagate in the material. A spectrometer in an electron microscope measured the energies of these vibrations to confirm this hypothesis.

This work was supported by the SACRe programme at the Université PSL, the Observatoire des Patrimoines de Sorbonne Université and the CEA and CNRS’s national network for transmission electron microscopy and atom probe microscopy.

- Advertisement -

CNRS (Délégation Paris Michel-Ange)

Header Image – Edmond Becquerel, Solar spectra, 1848, photochromatic images, Musée Nicéphore Niépce, Chalon-sur-Saône.

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Project is restoring Costa Rica’s mysterious stone spheres

A joint team of specialists from Costa Rica and Mexico are restoring three stone spheres at the Finca 6 Museum Site in Palmar de Osa.

Inscription sheds light on First Emperor’s quest for immortality

China’s First Emperor, Qin Shi Huang, was born in 259 BC in Handan, the capital of Zhao. He was originally named Ying Zheng, or Zhao Zheng, with ‘Zheng’ drawn from Zhengyue, the first month of the Chinese lunar calendar.

Artefacts from Battle of Dubienka unearthed near Uchanie

On July 18th, 1792, Polish forces under General Tadeusz Kościuszko clashed with Russian troops in what became one of the defining engagements of the Polish-Russian War.

Submerged port discovery could lead to Cleopatra’s lost tomb

Archaeologists have discovered a submerged ancient port near the ruins of the Taposiris Magna temple complex west of Alexandria, Egypt.

Archaeologists begin landmark study of Dzhetyasar culture settlements

Archaeologists from the Margulan Institute of Archaeology and the German Institute of Archaeology are conducting the first ever large-scale study of Dzhetyasar culture sites in Kazakhstan.

Study reveals arsenical bronze production during Egypt’s Middle Kingdom

A new open-access study published in Archaeometry unveils the first direct evidence of arsenical bronze production on Elephantine Island, Aswan, dating to Egypt’s Middle Kingdom (c. 2000–1650 BCE).

Hittite seals and tablets among new finds at Kayalıpınar

Archaeologists excavating the Hittite settlement of Kayalıpınar in Türkiye’s Sivas’ Yıldızeli district have unearthed a trove of cuneiform tablets and seal impressions.

Olmec rubber balls preserved with anoxia technology

Researchers from the National Institute of Anthropology and History (INAH) have developed a new anoxia technique to preserve ancient Olmec rubber balls found in southern Veracruz.