Date:

Holographic cosmological model and thermodynamics on the horizon of the universe

The expansion of the Universe has occupied the minds of astronomers and astrophysicists for decades.

Among the cosmological models that have been suggested over the years, Lambda cold dark matter (LCDM) models are the simplest models that can provide elegant explanations of the properties of the Universe, e.g., the accelerated expansion of the late Universe and structural formations. However, the LCDM model suffers from several theoretical difficulties, such as the cosmological constant problem. To resolve these difficulties, alternative thermodynamic scenarios have recently been proposed that extend the concept of black hole thermodynamics.

- Advertisement -

“Previous research implies that a certain type of universe will behave like an ordinary macroscopic system. The expansion of the Universe is considered likely to be related to thermodynamics on its horizon, based on the holographic principle,” explains the study’s author, Kanazawa University’s Nobuyoshi Komatsu.

Figure 1 shows the boundary for maximization of the entropy in the (α, ψ) plane for three values of the normalized scale factor a. ψ represents a type of density parameter for the effective dark energy and α is an exponent of the power-law term Hα. The closed circle represents the result from the fine-tuned LCDM model, i.e., (α, ψ) = (0, 0.685). Three boundaries for values of a=0.5, 1, and 4 are shown, where a=1 corresponds to the present time. The arrow at each boundary indicates a region that satisfies the conditions for maximization of the entropy. This region gradually extends downward as the normalized scale factor increases. However, the region does not currently exceed α=2. Credit : Kanazawa University

“I considered a cosmological model with a power-law term, assuming application of the holographic equipartition law. The power-law term is proportional to Hα, where H is the Hubble parameter and α is considered to be a free parameter (α may be related to the entanglement of the quantum fields close to the horizon).”

“I used the proposed model to study the thermodynamic properties on the horizon of the Universe, focusing on the evolutions of the Bekenstein-Hawking entropy. I found that the model satisfies the second law of thermodynamics on the horizon,” says Associate Professor Komatsu.

“In addition, I used the model to examine the relaxation-like processes that occur before the last stage of the evolution of the Universe and thus enable study of the maximization of the entropy.”

- Advertisement -

“Figure 1 shows the boundaries for maximization of the entropy in the (α, ψ) plane. Here, ψ represents a type of density parameter for the effective dark energy. The upper side of each boundary corresponds to the region that satisfies the conditions for maximization of the entropy. For example, the point for the fine-tuned LCDM model is found to satisfy the conditions for maximization of the entropy at the present time. In addition, the region close to this point also satisfies the conditions for maximization of the entropy, both at the present time and in the future. Cosmological models in this region are likely to be favored from a thermodynamics viewpoint,” says Associate Professor Komatsu.

In addition to the reported results of the study, it is hoped that the developed model will serve to enable discussion and analysis of the wide range of currently available cosmological models from a thermodynamics perspective.

KANAZAWA UNIVERSITY

Header Image – Public Domain

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists reveal hundreds of ancient monuments using LiDAR

A new study published in the journal Antiquity has revealed hundreds of previously unrecorded monuments at Baltinglass in County Wicklow, Ireland.

Archaeologists use revolutionary GPR robot to explore Viking Age site

Archaeologist from NIKU are using a revolutionary new GPR robot to explore a Viking Age site in Norway’s Sandefjord municipality.

Highway construction delayed following Bronze Age discoveries

Excavations in preparation for the S1 Expressway have delayed road construction following the discovery of two Bronze Age settlements.

Archaeologists uncover possible phallus carving at Roman Vindolanda

Excavations at the Roman fort of Vindolanda have uncovered a possible phallus carving near Hadrian’s Wall.

Carbonised Herculaneum papyrus reveals burial place of Plato

An analysis of carbonised papyrus from the Roman town of Herculaneum has revealed the burial place of Plato.

Sealed 18th century glass bottles discovered at George Washington’s Mount Vernon

As part of a $40 million Mansion Revitalisation Project, archaeologists have discovered two sealed 18th century glass bottles at George Washington's Mount Vernon.

Study suggests human occupation in Patagonia prior to the Younger Dryas period

Archaeologists have conducted a study of lithic material from the Pilauco and Los Notros sites in north-western Patagonia, revealing evidence of human occupation in the region prior to the Younger Dryas period.

Fort excavation uncovers Roman sculpture

Archaeologists excavating Stuttgart’s Roman fort have uncovered a statue depicting a Roman god.