Date:

Chlamydia-related bacteria discovered deep below the Arctic Ocean

Chlamydia are infamous for causing sexually transmitted infections in humans and animals or even amoeba.

An international team of researchers have now discovered diverse populations of abundant Chlamydia living in deep Arctic ocean sediments. They live under oxygen-devoid conditions, high pressure and without an apparent host organism. Their study, published in Current Biology today, provides new insights into how Chlamydia became human and animal pathogens.

- Advertisement -
Credit: K G Jebsen Centre for Deep Sea Research, University of Bergen

Chlamydia and related bacteria, collectively called ‘Chlamydiae’, and all studied members of this group depend on interactions with other organisms to survive. Chlamydiae specifically interact with organisms such as animals, plants and fungi, and including microscopic organisms like amoeba, algae and plankton.

Chlamydiae spend a large part of their lives inside the cells (also one cell?) of their hosts, humans, but also of koala bears. Most knowledge about Chlamydiae is based on studies of pathogenic lineages in the lab. But do Chlamydiae also exist in other environments? The new research published in Current Biology shows that Chlamydiae can be found in the most unexpected of places.

Growing in 3 km deep ocean

An international group of researchers report the discovery of numerous new species of Chlamydiae growing in deep Arctic Ocean sediments, in absence of any obvious host organisms. The researchers had been exploring microbes that live over 3 km below the ocean surface and several meters into the ocean seafloor sediment during an expedition to Loki’s Castle, a deep-sea hydrothermal vent field located in the Arctic Ocean in-between Iceland, Norway, and Svalbard.

- Advertisement -

This environment is devoid of oxygen and macroscopic life forms. Unexpectedly, the research team came across highly abundant and diverse relatives of Chlamydia. “Finding Chlamydiae in this environment was completely unexpected, and of course begged the question what on earth were they doing there?” says Jennah Dharamshi from Uppsala University in Sweden and lead author of the study.

The team of researchers had been working with metagenomic data – obtained by collectively sequencing the genetic material of all organisms that live in an environment – which doesn’t rely on growing organisms in the lab. “The vast majority of life on earth is microbial, and currently most of it can’t be grown in the lab,” explains Thijs Ettema, professor in Microbiology at Wageningen University & Research in The Netherlands who led the work. “By using genomic methods, we obtained a more clear image on the diversity of life. Every time we explore a different environment, we discover groups of microbes that are new to science. This tells us just how much is still left to discover”.

Impact on the ecology in oxygen free ecosystem

Thijs Ettema’s team discovered that one of these new groups of Chlamydiae is closely related to Chlamydia that cause disease in humans and other animals. “Finding that Chlamydia have marine sediment relatives, has given us new insights into how chlamydial pathogens evolved.” says Jennah Dharamshi. Some of these new groups of Chlamydiae are exceptionally abundant in these ocean sediments, and in some cases are even the dominant bacteria present. The researchers suggest this means that Chlamydiae have a significant impact on the ecology in this oxygen-devoid ecosystem. In fact, they also identified Chlamydiae in a myriad of additional environments. “Chlamydiae have likely been missed in many prior surveys of microbial diversity”, suggests Wageningen researcher Daniel Tamarit. “This group of bacteria could be playing a much larger role in marine ecology than we previously thought.”

‘They require components from other microbes’

Unfortunately, the researchers have as of yet been unable to grow these Chlamydiae or take images of them. “Even if these Chlamydiae are not associated with a host organism, we expect that they require compounds from other microbes living in the marine sediments. Additionally, the environment they live in is extreme, without oxygen and under high pressure, this makes growing them a challenge,” explains Thijs Ettema. Nevertheless, the discovery of Chlamydiae in this unexpected environment challenges the current understanding of the biology of this ancient group of bacteria, and hints that additional Chlamydiae are awaiting to be discovered.

Wageningen University & Research

Header Image – Push coring of deep sea sediments with the remotely operated vehicle Ægir at 2800 meters depth in the Norwegian-Greenland sea during K G Jebsen Centre for Deep Sea research expedition 2018 Credit: K G Jebsen Centre for Deep Sea Research, University of Bergen.

Header Image – Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Dolphin mosaic discovery is part of an expansive Roman villa complex

Archaeologists from OÖ Landes-Kultur GmbH and the University of Salzburg have uncovered an expansive Roman villa complex on Reinberg hill in Thalheim bei Wels, Austria.

Over 100 prehistoric structures found in Spanish cave

Archaeologists from the University of Alicante and the University of Zaragoza have discovered over 100 prehistoric structures within the Cova Dones cave system in Valencia, Span.

Viking-era treasure hoard among several significant discoveries in Täby

Several significant Viking-era discoveries have been made in Täby, Sweden, where archaeologists from Arkeologerna have uncovered a large silver hoard alongside the remains of an extensive farming settlement.

Lost monuments of the “people of the cloud forest” unearthed at Gran Pajatén

The World Monuments Fund (WMF) has announced the discovery of more than 100 previously undocumented structures at Gran Pajatén, located within Peru’s Río Abiseo National Park.

Experts explain the cultural origin of the mysterious deformed skull

Construction workers in San Fernando, Argentina, recently uncovered a mysterious skull with an unusual, deformed morphology.

1,600-year-old Byzantine mosaic unveiled for the first time

A large Byzantine-era mosaic discovered in 1990 at the edge of Khirbat Be’er Shema, Israel, has been unveiled to the public for the first time.

Over 1,200 archaeological sites identified in the Bayuda Desert

Archaeologists have identified over 1,200 archaeological sites during an exploration project of Sudan’s Bayuda Desert.

5,000-year-old fire altar discovery at oldest centre of civilisation in the Americas

Archaeologists have uncovered a 5,000-year-old fire altar at the Era de Pando archaeological site, revealing new secrets of the oldest centre of civilisation in the Americas.