Date:

Ages of the Navajo Sandstone

The real Jurassic Park was as an ancient landscape home to a vast desert covered mostly in sand dunes as far as the eye could see, where dinosaurs and small mammals roamed southern Utah.

The Navajo Sandstone is known for its beautiful red and tan crossbedded sandstones that grace many of the national parks and monuments in the southwest USA––for example Arches, Canyonlands, Capitol Reef, and Zion national parks.

- Advertisement -

The sands were deposited in dunes within the largest known sand sea (erg) in Earth’s history during the Early Jurassic. These deposits show a record of desertification—the process by which fertile lands become desert. How did this landscape lose its water bodies, vegetation, and animals? How long did desertification take to happen? How long did it last? What amount of time is actually represented by these deposits? Understanding the timing, scale, and duration of this significant period in Earth’s history is challenging, and many questions are unanswered due to the lack of age constraints in these deposits.

A new study by Parrish et al., published in Geology, has determined numerical ages from several calcium carbonate (i.e., carbonates, CaCO3) rock layers that represent lake deposits that once occupied interdune areas, which served as watering holes for a variety of dinosaurs and small theraspids (relatives of mammals). These carbonates were age dated using the radiometric method of uranium-lead (U-Pb), providing ages of 200.5 ± 1.5 million years (Ma) and 195.0 ± 7.7 Ma.

These age dates show that in eastern Utah parts of the Navajo desert are much older than previously thought, and together with age dates from Arizona show that the giant sand sea became younger to the south. The lake and associated spring deposits also show that this vast desert, at times, had a wetter climate and more active hydrologic cycle than had been previously assumed.

This work demonstrates that the desertification process is complex, and that age dates from carbonates and correlation of rock layers will help answer major questions of how desertification takes place in continental interiors.

- Advertisement -

This study has societal relevance because the history of hydroclimate (i.e., groundwater and climate) change recorded in the Navajo desert deposits can serve as a model for modern marginal environments that may be impacted by desertification from a warming climate. With the projected rise in global temperature, regions in marginal zones are anticipated to become even more vulnerable to desertification. That is, these zones will become part of the growing desert regions. Particularly vulnerable areas are found in Africa and Asia, areas with large population densities that are already exceeding the capacity to supply food and water. By studying how the Navajo erg evolved, we can provide important insights into rates of modern desertification.

Geological Society of America, The (GSA)

Header Image – Navajo Sandstone from the Moab, Utah, USA, area taken by study co-author Stephen T. Hasiotis.

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Viking-Era boat burial uncovered on Senja

Archaeologists have uncovered a Viking-Era boat burial on the island of Senja in northern Norway.

Mystery of the Maka Lahi Rock finally solved

In 2024, researchers from Australia's University of Queensland discovered a giant 1,200-tonne rock more than 200 metres inland on the island of Tongatapu.

Secrets to crafting the Nebra Sky Disc revealed

Using a blend of forensic material analysis with experimental archaeology, researchers have successfully reconstructed the techniques and processes behind crafting the Nebra Sky Disc.

Royal tomb unearthed in Gordion could belong to King Midas’ family

Archaeologists from the Gordion Project have uncovered a Phrygian royal tomb, potentially belonging to a member of King Midas' Family from the 8th century BC.

Bronze Age tombs reveal wealth from ancient trade

The discovery of three Bronze Age tombs at Dromolaxia-Vyzakia has shed light on ancient trade routes connecting Cyprus with the Aegean, Anatolia, Egypt, and the Near East.

Dolphin mosaic discovery is part of an expansive Roman villa complex

Archaeologists from OÖ Landes-Kultur GmbH and the University of Salzburg have uncovered an expansive Roman villa complex on Reinberg hill in Thalheim bei Wels, Austria.

Over 100 prehistoric structures found in Spanish cave

Archaeologists from the University of Alicante and the University of Zaragoza have discovered over 100 prehistoric structures within the Cova Dones cave system in Valencia, Span.

Viking-era treasure hoard among several significant discoveries in Täby

Several significant Viking-era discoveries have been made in Täby, Sweden, where archaeologists from Arkeologerna have uncovered a large silver hoard alongside the remains of an extensive farming settlement.