Dinosaur bones are home to microscopic life

Related Articles

Related Articles

The odds of scientists cloning a dinosaur from ancient DNA are pretty much zero.

That’s because DNA breaks down over time and isn’t stable enough to stay intact for millions of years. And while proteins, the molecules in all living things that give our bodies structure and help them operate, are more stable, even they might not be able to survive over tens or hundreds of millions of years. In a new paper published in eLife, scientists went looking for preserved collagen, the protein in bone and skin, in dinosaur fossils. They didn’t find the protein, but they did find huge colonies of modern bacteria living inside the dinosaur bones.

“This is breaking new ground–this is the first time we’ve discovered this unique microbial community in these fossil bones while they’re buried underground,” says lead author Evan Saitta, a postdoctoral researcher at the Field Museum. “And I would say that it’s another nail in the coffin in the idea of dinosaur proteins getting preserved intact.”

 

Saitta began researching organic molecules in fossils as part of his doctoral thesis at the University of Bristol. “My PhD work focused on how soft tissues fossilize and how these materials break down. Some molecules can survive in the fossil record, but I suspect proteins can’t; they’re unstable on those timescales in the conditions of fossilization,” explains Saitta.

However, some paleontologists have reported finding dinosaur bones that contain exceptionally preserved traces of the protein collagen, along with soft tissues like blood and bone cells. “There’s been an uptick in interest in these supposed dinosaur proteins,” says Saitta. So, he set out to try to independently verify the presence of collagen in dinosaur fossils.

Saitta took pains to collect dinosaur fossils under as sterile conditions as possible so that new proteins or bacteria wouldn’t be introduced to the fossils and skew the results. He took a pickaxe, saw, blowtorch, ethanol, and bleach, out to Dinosaur Provincial Park in Alberta, Canada.

“There’s a single layer where there’s practically more bone than rock, it’s ridiculous how concentrated the bones are,” says Saitta. A site with lots of bone was key, because a slow, meandering dig would open up the fossils to more chances to be contaminated by the surface world. “To collect these bones in a very controlled, sterile way, you need a dig site with a ton of bone because you have to find the bone quickly, expose just enough of one end to know what it is, then aseptically collect the unexposed bit of the bone and surrounding rock all in one.” Saitta collected 75-million-year-old fossils from Centrosaurus–a smaller cousin of Triceratops–and then took the bones back to various laboratories to examine their organic composition.

Saitta and his colleagues compared the biochemical makeup of the Centrosaurus fossils with modern chicken bones, sediment from the fossil site in Alberta, and thousands-of-years-old shark teeth that washed up on the shore of Saitta’s hometown of Ponte Vedra Beach, Florida. “We visited multiple labs, and the different techniques gave us consistent and easily interpretable results, suggesting that the aseptic collection was sufficient,” says Saitta. They found that the Centrosaurus fossils didn’t seem to contain the collagen proteins present in fresh bones or the much younger shark teeth. But they did find something else: “We see lots of evidence of recent microbes,” explains Saitta. “There’s clearly something organic in these bones.” And since the labwork indicates that Saitta’s anti-contamination measures worked, these organic materials must have gotten there naturally.

“We found non-radiocarbon dead organic carbon, recent amino acids, and DNA in the bone–that’s indicative that the bone is hosting a modern microbial community and providing refuge,” Saitta says. He thinks, as others have previously suggested, that the modern microbes and their secretions, called biofilm, are likely what other researchers have seen in fossils and reported as dinosaur soft tissues. “I suspect that if we began to do this kind of analysis with other specimens, it would begin to explain some of the so-called dinosaur soft tissue discoveries,” he says.

Surprisingly, the modern microbes present in the dinosaur bones aren’t quite the same run-of-the-mill bacteria living in the surrounding rock. “It’s a very unusual community,” says Saitta. “Thirty percent of the sequences are related to Euzebya, which is only reported from places like Etruscan tombs and the skin of sea cucumbers, as far as I know.”

Saitta and his colleagues aren’t sure why these particular microbes are living in the dinosaur bones, but he’s not shocked that bacteria are drawn to the fossils. “Fossil bones contain phosphorus and iron, and microbes need those as nutrients. And the bones are porous–they wick up moisture. If you were a bacterium living in the ground, you’d probably want to live in a dinosaur bone,” he says. “These bacteria are clearly having a jolly good time in these bones.”

The discovery could help further the emerging field of molecular paleontology, says Saitta. “It’s one of the new frontiers of modern paleontology. We are beginning to undertake a very different kind of fossil hunting. We’re not just looking for bones and teeth, hoping to find new species, we’re doing molecular fossil hunting–it opens up an entirely new line of evidence by which to study life in the past. Molecular fossils can tell us things we never thought we’d be able to investigate. Distinguishing what is modern from what is ancient is important.”

FIELD MUSEUM

Image Credit : Centrosaurus, the Triceratops relative whose bones contained modern microbes. Credit : Nobu Tamura

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Some Dinosaurs Could Fly Before They Were Birds

New research using the most comprehensive study of feathered dinosaurs and early birds has revised the evolutionary relationships of dinosaurs at the origin of birds.

Searching the Ancient Depths of a Reptilian Genome Yields Insight into all Vertebrates

Scientists searching the most ancient corners of the genome of a reptile native to New Zealand found patterns that help explain how the genomes of all vertebrates took shape, according to a recently published study.

Researchers Unlock Secrets of the Past With New International Carbon Dating Standard

Radiocarbon dating is set to become more accurate than ever after an international team of scientists improved the technique for assessing the age of historical objects.

New Findings Dispel the View That Australia’s First Peoples Were ‘Only Hunter Gatherers’

Archaeologists at The Australian National University (ANU) have found the earliest evidence of Indigenous communities cultivating bananas in Australia.

Bones Recently Found on the Isle of Wight Belong to a New Species of Theropod Dinosaur

A new study by Palaeontologists at the University of Southampton suggests four bones recently found on the Isle of Wight belong to new species of theropod dinosaur, the group that includes Tyrannosaurus rex and modern-day birds.

Cremation in the Middle-East Dates as Far Back as 7,000 B.C.

The gender of the human remains found inside a cremation pyre pit in Beisamoun, Israel remains unknown. What is known is that the individual was a young adult injured by a flint projectile several months prior to their death in spring some 9,000 years ago.

Academics Develop New Method to Determine the Origin of Stardust in Meteorites

Meteorites are critical to understanding the beginning of our solar system and how it has evolved over time.

Primate Voice Boxes are Evolving at a Rapid Pace

Scientists have discovered that the larynx, or voice box, of primates is significantly larger relative to body size, has greater variation, and is under faster rates of evolution than in other mammals.

Popular stories

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.

Did Corn Fuel Cahokia’s Rise?

A new study suggests that corn was the staple subsistence crop that allowed the pre-Columbian city of Cahokia to rise to prominence and flourish for nearly 300 years.

The Real Dracula?

“Dracula”, published in 1897 by the Irish Author Bram Stoker, introduced audiences to the infamous Count and his dark world of sired vampiric minions.