A family of comets reopens the debate about the origin of Earth’s water

Related Articles

Related Articles

Where did the Earth’s water come from? Although comets, with their icy nuclei, seem like ideal candidates, analyses have so far shown that their water differs from that in our oceans.

Now, however, an international team, bringing together CNRS researchers at the Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (Paris Observatory – PSL/CNRS/ Sorbonne University/University of Cergy-Pontoise) and the Laboratory of Space Studies and Instrumentation in Astrophysics (Paris Observatory – PSL/CNRS/Sorbonne University/University of Paris), has found that one family of comets, the hyperactive comets, contains water similar to terrestrial water. The study, published in the journal Astronomy & Astrophysics on May 20, 2019, is based in particular on measurements of comet 46P/Wirtanen carried out by SOFIA, NASA’s Stratospheric Observatory for Infrared Astronomy.

According to the standard theory, the Earth is thought to have formed from the collision of small celestial bodies known as planetesimals. Since such bodies were poor in water, Earth’s water must have been delivered either by a larger planetesimal or by a shower of smaller objects such as asteroids or comets.

To trace the source of terrestrial water, researchers study isotopic ratios1, and in particular the ratio in water of deuterium to hydrogen, known as the D/H ratio (deuterium is a heavier form of hydrogen). As a comet approaches the Sun, its ice sublimes2, forming an atmosphere of water vapour that can be analysed remotely. However, the D/H ratios of comets measured so far have generally been twice to three times that of ocean water, which implies that comets only delivered around 10% of the Earth’s water.

When comet 46P/Wirtanen approached the Earth in December 2018 it was analysed using the SOFIA airborne observatory, carried aboard a Boeing aircraft. This was the third comet found to exhibit the same D/H ratio as terrestrial water. Like the two previous comets, it belongs to the category of hyperactive comets which, as they approach the Sun, release more water than the surface area of their nucleus should allow. The excess is produced by ice-rich particles present in their atmosphere.

Intrigued, the researchers determined the active fraction (i.e. the fraction of the nucleus surface area required to produce the amount of water present in their atmosphere) of all comets with a known D/H ratio. They found that there was an inverse correlation between the active fraction and the D/H ratio of the water vapour: the more a comet tends towards hyperactivity (i.e. an active fraction exceeding 1), the more its D/H ratio decreases and approaches that of the Earth.


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

Hyperactive comets, whose water vapour is partially derived from icy grains expelled into their atmosphere, thus have a D/H ratio similar to that of terrestrial water, unlike comets whose gas halo is produced only by surface ice. The researchers suggest that the D/H ratios measured in the atmosphere of the latter are not necessarily indicative of the ice present in their nucleus. If this hypothesis is correct, the water in all cometary nuclei may in fact be very similar to terrestrial water, reopening the debate on the origin of Earth’s oceans.

CNRS (Délégation Paris Michel-Ange)

Header Image – The comet 46P/Wirtanen on January 3, 2019. © Nicolas Biver

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Suggests the Mystery of The Lost Colony of Roanoke Solved

The Roanoke Colony refers to two colonisation attempts by Sir Walter Raleigh to establish a permanent English settlement in North America.

Drones Map High Plateaus Basin in Moroccan Atlas to Understand Human Evolution

Researchers from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) have been using drones to create high-resolution aerial images and topographies to compile maps of the High Plateaus Basin in Moroccan Atlas.

The Kerguelen Oceanic Plateau Sheds Light on the Formation of Continents

How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory.

Ancient Societies Hold Lessons for Modern Cities

Today's modern cities, from Denver to Dubai, could learn a thing or two from the ancient Pueblo communities that once stretched across the southwestern United States. For starters, the more people live together, the better the living standards.

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Popular stories