Date:

Bristol undergraduate reconstructs the skulls of 2 species of ancient reptile

Using two partially fragmented fossil skulls, a student at the University of Bristol has digitally reconstructed, in three-dimensions, the skulls of two species of ancient reptile that lived in the Late Triassic, one of which had been previously known only from its jaws.

The research was completed by Sofia Chambi-Trowell, an undergraduate in Bristol’s School of Earth Sciences, as part of her final-year project for her degree in Palaeobiology.

- Advertisement -

Clevosaurus was a lizard-like reptile that was first named back in 1939 from specimens found at Cromhall Quarry, near Bristol.

Since then, similar beasts have been found elsewhere around Bristol and in South Wales, as well as in China and North America. Clevosaurus was an early representative of an ancient group of reptiles called Rhynchocephalia, which today is represent only by the tuatara of New Zealand.

In her project, Sofia worked on new fossils of Clevosaurus hudsoni, the first species to be named, and Clevosaurus cambrica, which was named from a quarry site in South Wales in 2018.

She used CT scans of both skulls to reconstruct their original appearance, and she found evidence that the two species, which lived at the same time in the Late Triassic, some 205 million years ago, showed significant differences.

- Advertisement -

Sofia said: “I found that Clevosaurus cambrica was smaller overall and had a narrower snout than Clevosaurus hudsoni.

“Other differences include the number, shape and size of the teeth in the jaws, suggesting the two species fed on different food.”

Clevosaurus probably ate insects. Clevosaurus cambrica has corkscrew-shaped teeth which suggests it was able to shred the insect carcass by the natural twist as it drove its teeth through the hard carapace.

Clevosaurus hudsoni had teeth more adapted for simply slicing the prey. This might suggest that Clevosaurus cambrica ate larger or harder-shelled insects like beetles or cockroaches, while Clevosaurus hudsoni ate worms or millipedes which were less tough.

Skulls of the two species of Clevosaurus, showing the difference in size, and the differences kin the teeth kin the jaws — blade-like in Clevosaurus hudsoni and corkscrew-like in Clevosaurus cambrica.  Credit – Sophie Chambi-Trowell.

Professor Mike Benton, one of Sofia’s project supervisors, added: “Sofia’s work is a great example of how modern technology like CT scanning can open up information we would not know about.

“It took a lot of work, but Sofia has uncovered a good explanation of how many species of Clevosaurus could live side by side without competing over food.”

Her other supervisor, Dr David Whiteside, said: “Two hundred million years ago, Bristol lay much further south than it does today – about the same latitude as Morocco.

“Also, sea level was higher, so the peaks of limestone hills south of Bristol and in South Wales were islands, like Florida today.

“They were full of dinosaurs, early mammals, and rhynchocephalians feeding on the rich, tropical plants and insects. Sofia’s work helps us understand so much about this extraordinary time when dinosaurs were just taking over the world.”

UNIVERSITY OF BRISTOL

Header Image – Life image of Clevosaurus. Image by Sophie Chambi-Trowell.

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Structure for observing celestial movements predates the Chankillo observatory

The Peruvian Ministry of Culture has announced the discovery of an early Andean structure that predates the Chankillo solar observatory – long regarded as the earliest known observatory in the Americas.

2,300-year-old fortified city discovered in Kashkadarya

Archaeologists from the Samarkand Institute in Kashkadarya, southern Uzbekistan, have announced a major discovery: the remains of a fortified city dating back 2,300 years.

Jewel “worthy of a duke” unearthed at Castle Kolno

Researchers from the Institute of Archaeology at the University of Wroclaw have unearthed a jewel “worthy of a duke” at Castle Kolno, located between the Stobrawa and Budkowiczanka rivers in Stare Kolnie, Poland.

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.