Date:

Research solves a 160-year-old mystery about the origin of skeletons

Scientists at The University of Manchester and the University of Bristol have used powerful X-rays to peer inside the skeletons of some of our oldest vertebrate relatives, solving a 160-year-old mystery about the origin of our skeletons.

Living vertebrates have skeletons built from four different tissue types: bone and cartilage (the main tissues that human skeletons are made from), and dentine and enamel (the tissues from which our teeth are constructed). These tissues are unique because they become mineralised as they develop, giving the skeleton strength and rigidity.

- Advertisement -

Evidence for the early evolution of our skeletons can be found in a group of fossil fishes called heterostracans, which lived over 400 million years ago. These fishes include some of the oldest vertebrates with a mineralised skeleton that have ever been discovered. Exactly what tissue heterostracan skeletons were made from has long puzzled scientists.

Now a team of researchers from the University of Manchester, the University of Bristol and the Paul Scherrer Institute in Switzerland have taken a detailed look inside heterostracan skeletons using Synchrotron Tomography: a special type of CT scanning using very high energy X-rays produced by a particle accelerator. Using this technique, the team have identified this mystery tissue.

Lead researcher Dr Joseph Keating, from Manchester’s School of Earth of Environmental Scientists, explained: “Heterostracan skeletons are made of a really strange tissue called ‘aspidin’. It is crisscrossed by tiny tubes and does not closely resemble any of the tissues found in vertebrates today. For a 160 years, scientists have wondered if aspidin is a transitional stage in the evolution of mineralised tissues.”

The results of this study, published in Nature Ecology and Evolution, show that the tiny tubes are voids that originally housed fibre-bundles of collagen, a type of protein found in your skin and bones.

- Advertisement -

These findings enabled Dr Keating to rule out all but one hypothesis for the tissue’s identity: aspidin is the earliest evidence of bone in the fossil record.

Co-author, Professor Phil Donoghue from the University of Bristol concludes: “These findings change our view on the evolution of the skeleton. Aspidin was once thought to be the precursor of vertebrate mineralised tissues. We show that it is, in fact, a type of bone, and that all these tissues must have evolved millions of years earlier.”

UNIVERSITY OF MANCHESTER

Header Image Credit :  A fossil heterostracan, Errivaspis waynensis, from the early Devonian (approximately 419 million years ago) of Herefordshire, UK. Credit : Image from Keating et al. 2018

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

1,300-year-old world chronicle unearthed in Sinai

A newly identified Christian world chronicle dating to the early 8th century is shedding fresh light on the political and religious upheavals that marked the transition from late antiquity to the rise of Islam.

Archaeologists find evidence of Hannibal’s war elephants in Spain

A small bone discovered in southern Spain may represent the first direct archaeological evidence of the war elephants used by Hannibal Barca during the Punic Wars.

Archaeologists unearth the buried history of Saint-Pierre

Archaeologists have been excavating in the Mouillage district of Saint-Pierre, Martinique, offering a rare glimpse into the city’s development from its early days to its destruction during the 1902 eruption of Mount Pelée.

Lost burial grounds rediscovered through folklore

A new study by Dr Marion Dowd, lecturer in archaeology at Atlantic Technological University (ATU), sheds light on Ireland’s cillíní - unconsecrated burial grounds used for babies that were stillborn, miscarried or who died at birth without been baptised.

Study finds over 630,000 ancient charcoal kilns in Poland

Researchers from the Polish Academy of Sciences have identified more than 630,000 ancient charcoal kilns in Poland, which form the basis on which technology grew, driving everything from toolmaking to early urban centres.

Centre of Grimsby’s medieval past unearthed

A window into the Grimsby of yesteryear has been uncovered – from scraps of leather shoes to fish bones – building a unique picture of the development of the Lincolnshire port town.

First evidence of deliberate mummification in Inca child sacrifice discovered

Archaeologists have identified the first known case of deliberate mummification of a child sacrificed during the Inca capacocha ritual.

The forgotten Alexandria: Rediscovering a lost metropolis on the Tigris

For centuries, one of antiquity’s most important cities slipped quietly out of human memory.