Date:

Cracking Open the Formation of Fossil Concretions

Researchers at Nagoya University resolve the formation mechanism of “spherical carbonate concretions” and find they form much more rapidly than previously recognized

All over the world, spectacular fossils have frequently been found preserved inside solid, roughly spherical rocks called “concretions.” From geologists to casual observers, many have wondered why these hardened masses of carbonate formed around dead organisms, with round shapes and sharp boundaries with the surrounding material, typically in marine mud and mudstone.

- Advertisement -

Several important questions regarding concretions have long puzzled scientists. What conditions cause them to form? How long do they take to grow? Why do they stop growing? Why are they so distinct from the surrounding rock or sediments?

Now, researchers led by Nagoya University have developed a method to analyze concretions using L-shaped “cross-plot diagrams” of diffusion and growth rate, reported in a new study published in Scientific Reports. With this method, they analyzed dozens of concretions from three sites across Japan and compared them with concretions from England and New Zealand.

The results of this new study dramatically impact understanding of the rate at which concretions form. “Until now, the formation of spherical carbonate concretions was thought to take hundreds of thousands to millions of years,” co-author Koshi Yamamoto says. “However, our results show that concretions grow at a very fast rate over several months to several years.” This rapid sealing mechanism could explain why some concretions contain well-preserved fossils of soft tissues that are rarely fossilized under other conditions.

Study first author Hidekazu Yoshida explains, “The concretions maintained their characteristics, with well-preserved fossils at their centers or textures indicative of the original presence of organic matter. Simple mass balance calculations also demonstrate that the carbon fixed in the carbonate concretions came predominantly from the organs of organisms inside the concretions.”

- Advertisement -

All of the studied concretions were composed of calcite, with relatively consistent compositions throughout, distinct from the surrounding muddy matrix. Fine-grained, generally clay-rich sediments were found to be important to limit diffusion and permeability, and to slow the migration of solutes. Thus, bicarbonate concentrations would rise high enough at a reaction front to cause rapid precipitation of calcium carbonate, with sharp boundaries from the surrounding mud.

This new unified model for the creation of spherical concretions, which can be generalized by simple formulas, can be applied to interpret concretions from all over the world. In addition to advancing our knowledge of this important preservation mechanism in the fossil record, this improved understanding of the rapid precipitation of calcite due to the presence of organic material may have practical applications in the field of sealing technology.

Nagoya University

Header Image: Moeraki boulders – Image Credit : Hidekazu Yoshida (271)

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Sinkhole reveals lost remains of medieval hospital

A sinkhole that formed outside the York Theatre Royal has led to the discovery of what could be one of England’s largest medieval hospitals.

Chalcolithic cultural treasures unearthed in Caucasus

Archaeologists from the Institute of Archaeology of the Russian Academy of Sciences have uncovered 13 Chalcolithic-era sites, each yielding a wealth of cultural artefacts and material evidence.

Study reveals East Asia’s earliest gold-inlaid spear sheath

In 1954, a bronze spear sheath dating from Japan’s Kofun period (AD 300–538) was found beneath a rock on Okinoshima, a sacred island located off the coast of Munakata, Fukuoka.

Cache of military helmets from both World Wars discovered during roadworks

Road construction works in the Polish city of Wroclaw have unearthed an unusual cache of military objects from WWI and WWII.

Ten Roman wonders of Britain

Discover the Roman Empire’s extraordinary legacy left on Britain through this selection of ten Roman wonders.

New archaeological treasures unearthed at Finziade

Archaeologists excavating at Finziade in southern Italy have unearthed an artisan workshop and a domestic sacellum containing archaeological treasures.

Significant multi-period discoveries in Delbrück-Bentfeld

An archaeological excavation in Delbrück-Bentfeld, a town in the east of North Rhine-Westphalia, Germany, has unearthed nearly 400 features of archaeological interest that span several centuries.

Excavation confirms the origin of Sheffield Castle

Archaeologists excavating the former site of Sheffield Castle site have confirmed that an artificial mound within the castle interior is a motte dating back to the earliest phase of the castle’s construction.