Date:

Cracking Open the Formation of Fossil Concretions

Researchers at Nagoya University resolve the formation mechanism of “spherical carbonate concretions” and find they form much more rapidly than previously recognized

All over the world, spectacular fossils have frequently been found preserved inside solid, roughly spherical rocks called “concretions.” From geologists to casual observers, many have wondered why these hardened masses of carbonate formed around dead organisms, with round shapes and sharp boundaries with the surrounding material, typically in marine mud and mudstone.

- Advertisement -

Several important questions regarding concretions have long puzzled scientists. What conditions cause them to form? How long do they take to grow? Why do they stop growing? Why are they so distinct from the surrounding rock or sediments?

Now, researchers led by Nagoya University have developed a method to analyze concretions using L-shaped “cross-plot diagrams” of diffusion and growth rate, reported in a new study published in Scientific Reports. With this method, they analyzed dozens of concretions from three sites across Japan and compared them with concretions from England and New Zealand.

The results of this new study dramatically impact understanding of the rate at which concretions form. “Until now, the formation of spherical carbonate concretions was thought to take hundreds of thousands to millions of years,” co-author Koshi Yamamoto says. “However, our results show that concretions grow at a very fast rate over several months to several years.” This rapid sealing mechanism could explain why some concretions contain well-preserved fossils of soft tissues that are rarely fossilized under other conditions.

Study first author Hidekazu Yoshida explains, “The concretions maintained their characteristics, with well-preserved fossils at their centers or textures indicative of the original presence of organic matter. Simple mass balance calculations also demonstrate that the carbon fixed in the carbonate concretions came predominantly from the organs of organisms inside the concretions.”

- Advertisement -

All of the studied concretions were composed of calcite, with relatively consistent compositions throughout, distinct from the surrounding muddy matrix. Fine-grained, generally clay-rich sediments were found to be important to limit diffusion and permeability, and to slow the migration of solutes. Thus, bicarbonate concentrations would rise high enough at a reaction front to cause rapid precipitation of calcium carbonate, with sharp boundaries from the surrounding mud.

This new unified model for the creation of spherical concretions, which can be generalized by simple formulas, can be applied to interpret concretions from all over the world. In addition to advancing our knowledge of this important preservation mechanism in the fossil record, this improved understanding of the rapid precipitation of calcite due to the presence of organic material may have practical applications in the field of sealing technology.

Nagoya University

Header Image: Moeraki boulders – Image Credit : Hidekazu Yoshida (271)

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

2,300-year-old fortified city discovered in Kashkadarya

Archaeologists from the Samarkand Institute in Kashkadarya, southern Uzbekistan, have announced a major discovery: the remains of a fortified city dating back 2,300 years.

Jewel “worthy of a duke” unearthed at Castle Kolno

Researchers from the Institute of Archaeology at the University of Wroclaw have unearthed a jewel “worthy of a duke” at Castle Kolno, located between the Stobrawa and Budkowiczanka rivers in Stare Kolnie, Poland.

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.

Evidence of lost Celtiberian city beneath Borobia 

The rediscovery of a funerary stele has provided new evidence of a lost Celtiberian City beneath the municipality of Borobia in the province of Soria, Spain.