Date:

Astronomers observe unprecedented detail in pulsar 6,500 light-years from Earth

A team of astronomers has performed one of the highest resolution observations in astronomical history by observing two intense regions of radiation, 20 kilometres apart, around a star 6500 light-years away.

The observation is equivalent to using a telescope on Earth to see a flea on the surface of Pluto.

- Advertisement -

The extraordinary observation was made possible by the rare geometry and characteristics of a pair of stars orbiting each other. One is a cool, lightweight star called a brown dwarf, which features a “wake” or comet-like tail of gas. The other is an exotic, rapidly spinning star called a pulsar.

“The gas is acting as like a magnifying glass right in front of the pulsar,” says Robert Main, lead author of the paper describing the observation being published May 24 in the journal Nature. “We are essentially looking at the pulsar through a naturally occurring magnifier which periodically allows us to see the two regions separately.”

Main is a PhD astronomy student in the Department of Astronomy & Astrophysics at the University of Toronto, working with colleagues at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics and Canadian Institute for Theoretical Astrophysics, and the Perimeter Institute.

The pulsar is a neutron star that rotates rapidly–over 600 times a second. As the pulsar spins, it emits beams of radiation from the two hotspots on its surface. The intense regions of radiation being observed are associated with the beams.

- Advertisement -

The brown dwarf star is about a third the diameter of the Sun. It is roughly two million kilometres from the pulsar–or five times the distance between the Earth and the moon–and orbits around it in just over 9 hours. The dwarf companion star is tidally locked to the pulsar so that one side always faces its pulsating companion, the way the moon is tidally locked to the Earth.

Because it is so close to the pulsar, the brown dwarf star is blasted by the strong radiation coming from its smaller companion. The intense radiation from the pulsar heats one side of the relatively cool dwarf star to the temperature of our Sun, or some 6000°C.

The blast from the pulsar could ultimately spell its companion’s demise. Pulsars in these types of binary systems are called “black widow” pulsars. Just as a black widow spider eats its mate, it is thought that the pulsar, given the right conditions, could gradually erode gas from the dwarf star until the latter is consumed.

In addition to being an observation of incredibly high resolution, the result could be a clue to the nature of mysterious phenomena known as Fast Radio Bursts, or FRBs.

“Many observed properties of FRBs could be explained if they are being amplified by plasma lenses,” say Main. “The properties of the amplified pulses we detected in our study show a remarkable similarity to the bursts from the repeating FRB, suggesting that the repeating FRB may be lensed by plasma in its host galaxy.”

DUNLAP INSTITUTE FOR ASTRONOMY & ASTROPHYSICS

The pulsar PSR B1957+20 is seen in the background through the cloud of gas enveloping its brown dwarf star companion. Credit:  Dr. Mark A. Garlick; Dunlap Institute for Astronomy & Astrophysics, University of Toronto

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Underwater archaeologists find 112 glassware objects off Bulgaria’s coast

A team of underwater archaeologists from the Regional Historical Museum Burgas have recovered 112 glass objects from Chengene Skele Bay, near Burgas, Bulgaria.

Bronze Age axe found off Norway’s east coast

Archaeologists from the Norwegian Maritime Museum have discovered a Bronze Age axe off the coast of Arendal in the Skagerrak strait.

Traces of Bahrain’s lost Christian community found in Samahij

Archaeologists from the University of Exeter, in collaboration with the Bahrain Authority for Culture and Antiquities, have discovered the first physical evidence of a long-lost Christian community in Samahij, Bahrain.

Archaeologists uncover preserved wooden elements from Neolithic settlement

Archaeologists have discovered wooden architectural elements at the La Draga Neolithic settlement.

Pyramid of the Moon marked astronomical orientation axis of Teōtīhuacān

Teōtīhuacān, loosely translated as "birthplace of the gods," is an ancient Mesoamerican city situated in the Teotihuacan Valley, Mexico.

Anglo-Saxon cemetery discovered in Malmesbury

Archaeologists have discovered an Anglo-Saxon cemetery in the grounds of the Old Bell Hotel in Malmesbury, England.

Musket balls from “Concord Fight” found in Massachusetts

Archaeologists have unearthed five musket balls fired during the opening battle of the Revolutionary War at Minute Man National Historical Park in Concord, United States.

3500-year-old ritual table found in Azerbaijan

Archaeologists from the University of Catania have discovered a 3500-year-old ritual table with the ceramic tableware still in...