Date:

Researchers devise new strategy to search for ancient black holes

An interdisciplinary team of physicists and astronomers at the University of Amsterdam’s GRAPPA Center of Excellence for Gravitation and Astroparticle Physics has devised a new strategy to search for ‘primordial’ black holes produced in the early universe.

Such black holes are possibly responsible for the gravitational wave events observed by the Laser Interferometer Gravitational-Wave Observatory.

- Advertisement -

In a paper that appeared in Physical Review Letters this week, the researchers specifically show that the lack of bright X-ray and radio sources at the center of our galaxy strongly disfavours the possibility that these objects constitute all of the mysterious dark matter in the universe.

The existence of black holes tens of times more massive than our Sun was confirmed recently by the observation of gravitational waves, produced by the merger of pairs of massive black holes, with the LIGO interferometer. The origin of these objects is unclear, but one exciting possibility is that they originated in the very early universe, shortly after the Big Bang. It has been suggested that these ‘primordial’ black holes may constitute all of the universe’s dark matter – the mysterious substance that appears to permeate all astrophysical and cosmological structures, and that is fundamentally different from the matter made of atoms that we are familiar with.

An interdisciplinary team of UvA physicists and astronomers proposed to search for primordial black holes in our galaxy by studying the X-ray and radio emission that these objects would produce as they wander through the galaxy and accrete gas from the interstellar medium. The researchers have shown that the possibility that these objects constitute all of the dark matter in the galaxy is strongly disfavoured by the lack of bright sources observed at the galactic center.

‘Our results are based on a realistic modelling of the accretion of gas onto the black holes, and of the radiation they emit, which is compatible with current astronomical observations. These results are robust against astrophysical uncertainties’, says Riley Connors, PhD student at the UvA and an expert in black hole astrophysics. ‘What’s even more interesting’, adds Daniele Gaggero, first author of the publication, ‘is that with more sensitive future radio and X-ray telescopes, our proposed search strategy may allow us to discover a population of primordial black holes in our galaxy, even if their contribution to the dark matter is small.’

- Advertisement -

‘A convincing implementation of our original idea was possible thanks to the collective effort of an interdisciplinary team of scientists at the GRAPPA Center of Excellence for Astroparticle Physics’, says Gianfranco Bertone, GRAPPA spokesperson. ‘This includes theorists studying dark matter and the formation of black holes, astrophysicists modelling the subsequent accretion process, and astronomers working on radio and X-ray observations.’

The new findings are expected to shed light on the formation and origin of primordial black holes as well as of standard astrophysical black holes that are formed when stars collapse.

Universiteit van Amsterdam (UVA)

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

5,000-year-old fire altar discovery at oldest centre of civilisation in the Americas

Archaeologists have uncovered a 5,000-year-old fire altar at the Era de Pando archaeological site, revealing new secrets of the oldest centre of civilisation in the Americas.

Inside “Magic Mountain” – The secret Cold War bunker

“Magic Mountain”, otherwise known as the Avionics Building at RAF Alconbury, is a Grade II listed concrete bunker complex in the county of Cambridgeshire, England.

Nationally important WWII military treasures unearthed

Two nationally important WWII military treasures have been unearthed in the State Forests of Poland.

Mysterious brass eagle discovered in Chełm Forest District

A metal detecting survey in the Chełm Forest District, Poland, has resulted in the discovery of a mysterious brass eagle badge.

Gold ring from Second Temple period discovered in Jerusalem’s City of David

Archaeologists have discovered a gold ring set with a polished red garnet during excavations of an ancient residential structure in the Jerusalem Walls National Park.

Lost archival evidence on Admiral Alfred von Tirpitz has been rediscovered

A box discovered in the archives of the German Maritime Museum (DSM) has been found to contain a trove of previously unknown materials related to Alfred von Tirpitz.

Medieval discoveries in Huttons Ambo

Archaeologists have made several new discoveries from the late medieval period during excavations in the Yorkshire village of Huttons Ambo, England.

Funerary structure and ceremonial offerings unearthed at Kuélap

Archaeologists from Peru’s Ministry of Culture have unearthed a chulpa type funerary structure during excavations at the northern zone of the Kuélap archaeological complex.