How science is giving voice to mummies such as Ötzi the Iceman

Related Articles

Researchers recently managed to recreate the voice of 5,300-year-old Ötzi the iceman by recreating his vocal tract. The technology is promising and could be used to digitally produce the voices of other mummified remains. But how does it work and what else could it be used for?

When you make a vowel sound (aah, ee, oh, ooh and so on), three parts of your anatomy play important roles: your lungs, your larynx and the tube made from your throat and mouth. Your lungs provide the airflow that powers the sound. If the flow becomes too weak it will turn into a whisper instead.

Your larynx, or voice box, sits about midway between your lungs and your lips, just behind your Adam’s apple. The part you can feel from the outside is the cartilage protecting and supporting the vocal folds (or vocal cords) inside. These are a pair of soft, lip-like structures that run from your Adam’s apple to the back of your windpipe.

 

You can bring these folds firmly together across your windpipe to close it off completely – you do this when you cough or choke. You can also bring them across so they just touch, and if you do that and then breathe out they vibrate in much the same way your lips do if you blow a raspberry. These vibrating vocal folds are the source of sound for a vowel. If you say aah while you press your fingers gently either side of your Adam’s apple you can feel the vibrations in your larynx.

Everyone’s voice has a natural pitch based on the size of their larynx and in particular the length and thickness of their vocal folds. Your natural pitch is what comes out when your throat muscles are fairly relaxed and you don’t try to speak too loudly. Women have shorter, thinner vocal folds than men and so they have generally a higher natural pitch.

If your windpipe ended just above the larynx then you would just be able to produce buzzing sounds. The lowest frequency in the buzzing sound is part of your natural pitch, but there is also energy at many higher frequencies included in that sound. It’s the airway that shapes the buzz sound into a particular vowel.

We can think of this airway as a tube. You can change the length of that tube by protruding your lips, as you do when you say ooh, or by moving your tongue. When you say aah, your tongue rolls back out of your mouth and into your throat so the lower half of the tube is narrow and the upper half is wide, for example.

Every tube has a series of resonance frequencies that relates to its length and its cross-sectional area. These are the frequencies of sound that pass along the tube most easily and with least energy loss, so if we have a buzz sound generated at the larynx end of the tube, the sound at the lips’ end will be the original buzz, but with the resonance frequencies of the tube sounding much louder than any other frequencies in the buzz.

When you listen to a vowel sound it’s these resonance frequencies you are using to decide which vowel you are hearing. Changing the position of your tongue and lips changes the length and cross-section of the tube, which changes the resonances and ultimately the vowel you hear.

Ötzi and his peers

To know how Ötzi the Iceman sounded we need to know how long and how thick his vocal folds were – that tells us about the natural pitch of his voice. We also need to know how long his airway was and about the cross-sectional area to work out the resonance frequencies. His tongue and lips will have been preserved in one particular position which will only give us information about a single vowel sound. So if we are to work out how he sounded for other vowels we also need to know a bit about the size of his tongue and where it joined to his windpipe. Knowing this allows us to work out the other possible tube-shapes he could make and calculate their related resonances.

But how can you actually work all this out? It’s pretty simple, all you really need is a CT scan, which uses X-rays to create detailed images of the inside of the body. This allows us to measure all these anatomical dimensions. We can then use that information to make a computer model to synthesise what his voice might have sounded like.

The first use of X-rays to explore mummified remains is thought to have been by Walter Konig in 1896, very soon after X-rays were first discovered. CT scans have been conducted on mummies for more than 40 years, with the popularity of the technique increasing rapidly over the last decade or so. However, the study of Ötzi the Iceman seems to be the first time the CT data has been used to synthesise a voice.

In a study of 137 mummies published in the Lancet in 2013, CT scans were used to show that, contrary to much current thinking, disease of the arteries was common in many pre-industrial populations. For speech, the CT scanning technique could similarly provide us with valuable information about the dimensions of the vocal system for any mummified body. And with enough different sets of scans we might be able to track trends in voice over time, such as changes in the typical natural frequency due to nutrition and body size.

One of the big open questions about speech is exactly when the ability to communicate in this way evolved, and there is quite a controversy about whether Neanderthals, for example, could speak. Sadly the CT scanning techniques can’t help us with this as they rely on the preservation of soft tissue. The earliest hominid remains are fossilised which means only the bone structure has survived. The absence of lung, larynx, airway or tongue information in these fossils makes our ability to predict their capacity for speech very much less certain. At about 5,300-years-old Ötzi is the earliest European mummy in existence, but deliberately mummified bodies as old as 7,000 years have been found in South America. Spirit Cave Man, found in North America in 1940, has been dated at 9,000-years-old, so if CT scans were made, even older voices than Ötzi’s could perhaps be heard one day.

Written by Anna Barney

Associate Dean Education, Professor of Biomedical Acoustic Engineering, University of Southampton

The Conversation

The Conversation

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

10 British Iron Age Hill Forts

A hill fort is a type of earthworks used as a fortified refuge or defended settlement, located to exploit a rise in elevation for defensive advantage.

Stabiae – The Roman Resort Buried by Mount Vesuvius

Stabiae was an ancient Roman town and seaside resort near Pompeii, that was largely buried during the AD 79 eruption of Mount Vesuvius in present-day Italy.

Astronomers Accurately Measure the Temperature of Red Supergiant Stars

Red supergiants are a class of star that end their lives in supernova explosions. Their lifecycles are not fully understood, partly due to difficulties in measuring their temperatures. For the first time, astronomers develop an accurate method to determine the surface temperatures of red supergiants.

Researchers Overturn Hypothesis That Ancient Mammal Ancestors Moved Like Modern Lizards

The backbone is the Swiss Army Knife of mammal locomotion. It can function in all sorts of ways that allows living mammals to have remarkable diversity in their movements.

Archaeologists Discover one of Poland’s Largest Megalithic Tomb Complexes

Archaeologists excavating in Poland have discovered a large megalithic complex, containing several dozen tombs dating from 5500 years ago.

New Technology Allows Scientists First Glimpse of Intricate Details of Little Foot’s Life

In June 2019, an international team brought the complete skull of the 3.67-million-year-old Little Foot Australopithecus skeleton, from South Africa to the UK and achieved unprecedented imaging resolution of its bony structures and dentition in an X-ray synchrotron-based investigation at the UK's national synchrotron, Diamond Light Source.

Neandertals Had Capacity to Perceive and Produce Human Speech

Neandertals -- the closest ancestor to modern humans -- possessed the ability to perceive and produce human speech, according to a new study published by an international multidisciplinary team of researchers including Binghamton University anthropology professor Rolf Quam and graduate student Alex Velez.

Almost 600 Cats and Dogs Excavated in Ancient Pet Cemetery

Excavations of the early Roman port of Berenice in Egypt have unearthed the remains of nearly 600 cats and dogs from an ancient pet cemetery thought to be the earliest known yet discovered dating from 2000 years ago.

Popular stories

Ani – The Abandoned Medieval City

Ani is a ruined medieval city, and the former capital of the Bagratid Armenian kingdom, located in the Eastern Anatolia region of the Kars province in present-day Turkey.

Interactive Map of Earth’s Asteroid and Meteor Impact Craters

Across the history of our planet, around 190 terrestrial impact craters have been identified that still survive the Earth’s geological processes, with the most recent event occurring in 1947 at the Sikhote-Alin Mountains of south-eastern Russia.

The Sunken Town of Pavlopetri

Pavlopetri, also called Paulopetri, is a submerged ancient town, located between the islet of Pavlopetri and the Pounta coast of Laconia, on the Peloponnese peninsula in southern Greece.

Exploring the Avebury Stone Circle Landscape

The area was designated part of the Stonehenge, Avebury and Associated Sites by UNESCO in 1986, in recognition for one of the most architecturally sophisticated stone circles in the world, in addition to the rich Neolithic, and Bronze age remains found nearby, such as the West Kennet Avenue, Beckhampton Avenue, West Kennet Long Barrow, the Sanctuary, and Windmill Hill.