Date:

Ancient supernovae buffeted Earth’s biology with radiation dose, researcher says

Research published in April provided “slam dunk” evidence of two prehistoric supernovae exploding about 300 light years from Earth. Now, a follow-up investigation based on computer modeling shows those supernovae likely exposed biology on our planet to a long-lasting gust of cosmic radiation, which also affected the atmosphere.

“I was surprised to see as much effect as there was,” said Adrian Melott, professor of physics at the University of Kansas, who co-authored the new paper appearing The Astrophysical Journal Letters, a peer-reviewed express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research.

“I was expecting there to be very little effect at all,” he said. “The supernovae were pretty far way — more than 300 light years — that’s really not very close.”

According to Melott, initially the two stars that exploded 1.7 to 3.2 million and 6.5 to 8.7 million years ago each would have caused blue light in the night sky brilliant enough to disrupt animals’ sleep patterns for a few weeks.

- Advertisement -

But their major effect would have come from radiation, which the KU astrophysicist said would have packed doses equivalent to one CT scan per year for every creature inhabiting land or shallower parts of the ocean.

“The big thing turns out to be the cosmic rays,” Melott said. “The really high-energy ones are pretty rare. They get increased by quite a lot here — for a few hundred to thousands of years, by a factor of a few hundred. The high-energy cosmic rays are the ones that can penetrate the atmosphere. They tear up molecules, they can rip electrons off atoms, and that goes on right down to the ground level. Normally that happens only at high altitude.”

Melott’s collaborators on the research are Brian Thomas and Emily Engler of Washburn University, Michael Kachelrieß of the Institutt for fysikk in Norway, Andrew Overholt of MidAmerica Nazarene University and Dimitry Semikoz of the Observatoire de Paris and Moscow Engineering Physics Institute.

The boosted exposure to cosmic rays from supernovae could have had “substantial effects on the terrestrial atmosphere and biota,” the authors write.

For instance, the research suggested the supernovae might have caused a 20-fold increase in irradiation by muons at ground level on Earth.

“A muon is a cousin of the electron, a couple of hundred times heavier than the electron — they penetrate hundreds of meters of rock,” Melott said. “Normally there are lots of them hitting us on the ground. They mostly just go through us, but because of their large numbers contribute about 1/6 of our normal radiation dose. So if there were 20 times as many, you’re in the ballpark of tripling the radiation dose.”

Melott said the uptick in radiation from muons would have been high enough to boost the mutation rate and frequency of cancer, “but not enormously. Still, if you increased the mutation rate you might speed up evolution.”

Indeed, a minor mass extinction around 2.59 million years ago may be connected in part to boosted cosmic rays that could have helped to cool Earth’s climate. The new research results show that the cosmic rays ionize the Earth’s atmosphere in the troposphere — the lowest level of the atmosphere — to a level eight times higher than normal. This would have caused an increase in cloud-to-ground lightning.

“There was climate change around this time,” Melott said. “Africa dried out, and a lot of the forest turned into savannah. Around this time and afterwards, we started having glaciations — ice ages — over and over again, and it’s not clear why that started to happen. It’s controversial, but maybe cosmic rays had something to do with it.”

UNIVERSITY OF KANSAS

- Advertisement -
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.

Mobile Application

spot_img

Related Articles

Study uses satellite imagery to identify over 1,000 Andean hillforts

A new study, published in the journal Antiquity, uses satellite imagery to survey hillforts known as pukaras in the Andean highlands.

Roman defensive spikes unveiled at the Leibniz Centre for Archaeology

In 2023, archaeologists from Goethe-Universität Frankfurt am Main uncovered a series of wooden defensive spikes during excavations of a 1st century AD Roman fort in Bad Ems, western Germany.

Obsidian blade linked to Coronado’s expedition to find the fabled city of gold

Archaeologists suggest that a flaked-stone obsidian blade could be linked to the expedition led by Francisco Vasquez de Coronado to search for the fabled city of gold.

Clay seal stamp from First Temple period found in Jerusalem

Archaeologists have discovered a clay seal stamp from the First Temple period during excavations in the Western Wall Plaza, Jerusalem.

Offering of human sacrifices found at Pozo de Ibarra

Archaeologists from the National Institute of Anthropology and History (INAH) have uncovered an offering of human sacrifices at the Mexican town of Pozo de Ibarra.

Excavation uncovers preserved wooden cellar from Roman period

Archaeologists from the Frankfurt Archaeological Museum have uncovered a well-preserved wooden celler in Frankfurt, Germany.

Preserved temples from the Badami Chalukya era found in India

Archaeologists from the Public Research Institute of History, Archaeology, and Heritage (PRIHAH) have announced the discovery of two temples dating from the Badami Chalukya era.

Excavation of medieval shipbuilders reveals a Roman head of Mercury

Excavations of a medieval shipbuilders has led to the discovery of a Roman settlement and a Roman head of Mercury.