Meet Lidar: the amazing laser technology that’s helping archaeologists discover lost cities

Related Articles

Related Articles

Archaeologists have discovered several medieval cities, buried beneath the forest floor in Cambodia: the largest is said to rival the modern Cambodian capital, Phnom Penh, in size.

It’s a monumental discovery, based on two major archaeological surveys of the area around Siem Reap, not far from the famous temple complex of Angkor Wat in the heartlands of the ancient Khmer culture.

Once, an archaeologist would have spent their entire career hacking through the jungle, machete in hand, in order to map these ruins. But thanks to the clever use of airborne laser scanning technology, the entire project took just three years. Such is the incredible power of Lidar – short for “light detection and ranging” – an innovation which is causing great excitement throughout the archaeological world.

 

From 2012 to 2015, archaeologist Damian Evans and his team used Lidar technology, mounted on helicopters, to map some 2,230km² with an accuracy of +/- 150mm. With 16 data points measured every square metre, the researchers were not only able to pinpoint well-known monumental stone structures in exquisite detail, they also discovered the massive urban cultures which surrounded these temples, identifiable by the remains of earthworks such as mounds, canals, roads and quarries.

Lidar was first developed in the early 1970s to assist with space exploration; it was initially used on the Apollo 15 mission to map the surface of the moon. As its name suggests, the technology uses lasers to measure distance. When linked to a high precision GPS and mounted on an aerial platform, such as a plane or helicopter, it can produce a three-dimensional point cloud of the land surface below.

This technology is very exciting for archaeologists. Not only can it rapidly map huge areas of ancient landscapes, but the lasers are actually able to “see through” vegetation by multiple scans and by recording several reflections from a single pulse. By carefully choosing the correct time of year, when the leaf coverage is reduced, it is possible to record landscapes in tropical environments – a feat which ground-based archaeologists have always had great difficulty with, due to dense plant coverage and often poor GPS reception.

A different picture

With these findings, a completely novel view of the Khmer culture is emerging, which brings into question what we know about a great many other ancient civilisations.

So far, the great tropical civilisations of the world have remained some of the most enigmatic. Although they have produced great stone monuments, archaeologists still have many unanswered questions about how they operated, where their populations lived and how large they were.

This applies not just to the Khmer of Cambodia, but to civilisations throughout southeast Asia; from Srivijaya in Sumatra, to Borobudur in Java. Similarly, in Africa, we know little about the great kingdoms of Kongo or Benin, which are still largely covered in forest.

Lidar may well help us find answers to some of these questions. Already, Lidar is beginning to enrich our understanding of Mayan civilisation, especially the extensive field systems, which were used to support large cities. In Honduras, a large number of ancient sites have been found belonging to a largely unknown culture. And in Amazonia, settlements and fields are now beginning to emerge from beneath the rain forest canopy, thanks to remote sensing.

Landscape on the left, Lidar on the right. Damian Evans/Journal of Archaeological Science
Landscape on the left, Lidar on the right. Damian Evans/Journal of Archaeological Science

These results are more than just pretty pictures of ancient sites. They have the potential to challenge our understanding of the collapse of ancient civilisations. For example, they show that many areas which were once thought to be rainforest, actually used to be cleared, and sustained significant populations. They also show that many of the great ceremonial centres which are now engulfed in foliage, were once surrounded by large cities, with populations of hundred of thousands – or even millions – of people.

In often-fragile ecosystems, reliant on a stable climate, it is now much easier to see how environmental change might have contributed to the collapse of these ancient civilisations. As a result, many ideas about the collapse of ancient societies, such as those promoted by Jared Diamond – who emphasises social, political and economic factors – may require some significant rethinking.

What cost?

There are, of course, several problems with this technology. One is cost: the Cambodia survey was generously funded by the European Research Council, but access to both the equipment and the planes would be limited for most archaeologists. Some of the landscapes may be too remote to even reach by light aircraft or helicopter, or local authorities may ban such flights.

Placing Lidar technology onto drones may solve this issue in the future, but at present there have been only limited examples of their use in tropical zones. Given the scale of some of these sites, and the minimum height required (around 800m) a plane will remain the preferred method for now.

There is also the problem of ground-truthing. While these Lidar images are amazing, they do require careful interpretation and validation. Some may well show ancient features, but others may be quite modern in origin. So the archaeologist with their machete may not be entirely redundant – in fact, with this new technology at hand, they may be even more important than before.

Written by Mark Horton

Professor in Archaeology, University of Bristol

THE CONVERSATION

The Conversation

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Pace of Prehistoric Human Innovation Could be Revealed by ‘Linguistic Thermometer’

Multi-disciplinary researchers at The University of Manchester have helped develop a powerful physics-based tool to map the pace of language development and human innovation over thousands of years - even stretching into pre-history before records were kept.

Study Sheds New Light on the Behaviour of the Giant Carnivorous Dinosaur Spinosaurus

New research from Queen Mary University of London and the University of Maryland, has reignited the debate around the behaviour of the giant dinosaur Spinosaurus.

New Skull of Tube-Crested Dinosaur Reveals Evolution of Bizarre Crest

The first new skull of a rare species of the dinosaur Parasaurolophus (recognized by the large hollow tube that grows on its head) discovered in 97 years.

Women Influenced Coevolution of Dogs and Humans

In a cross-cultural analysis, Washington State University researchers found several factors may have played a role in building the mutually beneficial relationship between humans and dogs, including temperature, hunting and surprisingly - gender.

Dinosaur Embryo Helps Crack Baby Tyrannosaur Mystery

They are among the largest predators ever to walk the Earth, but experts have discovered that some baby tyrannosaurs were only the size of a Border Collie dog when they took their first steps.

First People to Enter the Americas Likely Did so With Their Dogs

The first people to settle in the Americas likely brought their own canine companions with them, according to new research which sheds more light on the origin of dogs.

Climate Change in Antiquity: Mass Emigration Due to Water Scarcity

The absence of monsoon rains at the source of the Nile was the cause of migrations and the demise of entire settlements in the late Roman province of Egypt.

Archaeologists Discover Bas-Relief of Golden Eagle at Aztec Templo Mayor

A team of archaeologists from the Instituto Nacional de Antropologia e Historia (INAH) have announced the discovery of a bas-relief depicting an American golden eagle (aquila chrysaetos canadensis).

Popular stories

Exploring the Stonehenge Landscape

The Stonehenge Landscape contains over 400 ancient sites, that includes burial mounds known as barrows, Woodhenge, the Durrington Walls, the Stonehenge Cursus, the Avenue, and surrounds the monument of Stonehenge which is managed by English Heritage.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).