Date:

94-million-year-old climate change event holds clues for future

A major climate event millions of years ago that caused substantial change to the ocean’s ecological systems may hold clues as to how the Earth will respond to future climate change, a Florida State University researcher said.

In a new study published in Earth and Planetary Science Letters, Assistant Professor of Geology Jeremy Owens explains that parts of the ocean became inhospitable for some organisms as the Earth’s climate warmed 94 million years ago. As the Earth warmed, several natural elements — what we think of as vitamins — depleted, causing some organisms to die off or greatly decrease in numbers.

- Advertisement -

The elements that faded away were vanadium and molybdenum, important trace metals that serve as nutrients for ocean life. Molybdenum in particular is used by bacteria to help promote nitrogen fixation, which is essential for all forms of life.

“These trace metals were drawn down to levels below where primary producing organisms, the base of the ocean food chain, can survive,” Owens said. “This change inhibited biology.”

The warming of the Earth during this time period took place over millions of years. At the time, the world was a drastically different place. Palms were found in Canada and lily pads dotted the Arctic Circle, while dinosaurs existed on land.

But as the world continued to warm, it caused “a natural feedback that had a dramatic effect on the world’s ocean chemistry, which is recorded in the rock record,” Owens said.

- Advertisement -

Owens and a team of researchers examined samples of sediment provided through the Ocean Drilling Program, a National Science Foundation-supported program that uses the scientific drill ship JOIDES Resolution to recover samples beneath the ocean floor off the coast of Venezuela. They examined a 10-meter portion that they pinned to the climate turnover event by analyzing microfossils or tiny shell organisms in the layer.

Owens found that ecological communities experienced a substantial shift 94 million years ago because many types of bacteria and algae were affected by the changes in ocean nutrients.

“Some of these species didn’t totally die, but they didn’t flourish the way they used to,” Owens said.

The decrease of these trace metals also suggests a global expansion of oxygen deficiency, which could lead to larger dead zones in bodies of water around the world, meaning little to no life could exist in those areas.

That is of concern to scientists as they try to understand what will happen to the world around us as the Earth continues to warm. For scientists, the events of 94 million years ago provide a possible glimpse into future climate change scenarios.

“This is the best window to understanding future climate change,” Owens said. “It gives us insight into the cascade of events that can affect the entire ocean.”

FLORIDA STATE UNIVERSITY

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

11th-century English monk first identified the cycles of Halley’s Comet

According to a new study published in arXiv, an 11th-century English monk first documented multiple appearances of Halley’s Comet, more than 600 years before Edmond Halley codified its orbit.

Ancient mega-site “cities” challenges long-held perceptions of urban origins

An archaeological site in Ukraine is attracting ever-increasing international interest as scientists rethink where the world’s earliest cities might have emerged.

Rare wheel cross discovery provides new evidence for early Christianisation

A bronze wheel, dated to the 10th or 11th century AD, has been discovered in the Havelland region of Brandenburg, Germany.

Zapotec tomb hailed as most important discovery in Mexico in last decade

Archaeologists from the National Institute of Anthropology and History (INAH) have announced the discovery of a well-preserved Zapotec tomb in the central valleys of Oaxaca, Mexico.

Deciphering Roman writing tablets from Tongeren

Recent advances in the study of Roman inscriptions have highlighted the enduring value of meticulous epigraphic scholarship.

Roman cemetery excavation reveals frontier burial practices

Archaeologists from Oxford Cotswold Archaeology (OCA) have completed one of the largest excavations of a Roman cemetery in Britain - providing unique evidence of funerary practices along the northern outskirts of the Roman Empire.

New study finds indirect evidence for existence of Moctezuma’s Zoo

A recent archaeological study has renewed interest in the role of animals within the ceremonial and urban landscape of ancient Tenochtitlan.

Roman Basilica designed by Vitruvius found in central Italy

A Roman basilica designed by Vitruvius, a leading architect of classical architecture during antiquity, was unearthed in central Italy.