Date:

Fast radio burst ‘afterglow’ was actually a flickering black hole

Last February a team of astronomers reported detecting an afterglow from a mysterious event called a fast radio burst, which would pinpoint the precise position of the burst’s origin, a longstanding goal in studies of these mysterious events.

These findings were quickly called into question by follow-up observations. New research by Harvard astronomers Peter Williams and Edo Berger shows that the radio emission believed to be an afterglow actually originated from a distant galaxy’s core and was unassociated with the fast radio burst.

- Advertisement -

“Part of the scientific process is investigating findings to see if they hold up. In this case, it looks like there’s a more mundane explanation for the original radio observations,” says Williams.

The new work has been accepted for publication in Astrophysical Journal Letters.

As their name suggests, fast radio bursts (or FRBs) are brief yet powerful spurts of radio energy lasting only a few milliseconds. The first ones were only identified in 2007. Their source has remained a mystery.

“We don’t even know if they come from inside our galaxy or if they’re extragalactic,” explains Berger.

- Advertisement -

Most FRBs have been identified in archival data, making immediate follow-up impossible. The new event, FRB 150418, is only the second one to be identified in real time. Radio observations reported in Nature purportedly showed a fading radio afterglow associated with the FRB. That afterglow was used to link the FRB to a host galaxy located about 6 billion light-years from Earth.

In late February and March of this year, Williams and Berger investigated the supposed host galaxy in detail using the NSF’s Jansky Very Large Array network of radio telescopes. The fantastic sensitivity of the VLA allowed the researchers to monitor the radio galaxy at the necessary cadence without having to disrupt the observatory’s regular schedule of operations.

If the initial observations had been an afterglow, it should have completely faded away. Instead they found a persistent radio source whose strength varied randomly by a factor of three, often reaching levels that matched the initial brightness of the claimed afterglow. The initial study also saw this source, but unluckily missed any rebrightenings.

“What the other team saw was nothing unusual,” states Berger. “The radio emission from this source goes up and down, but it never goes away. That means it can’t be associated with the fast radio burst.”

The emission instead originates from an active galactic nucleus that is powered by a supermassive black hole. Dual jets blast outward from the black hole, and complex physical processes within those jets create a constant source of radio waves.

The variations we see from Earth may be due to a process called “scintillation,” where interstellar gases make an intrinsically steady radio beacon appear to flicker, just like Earth’s atmosphere makes light from stars twinkle. The source itself might also be varying as the active galactic nucleus periodically gulps a little more matter and flares in brightness.

While the link between the fast radio burst and a specific galaxy has vanished, the astronomers remain optimistic for future studies.

“Right now the science of fast radio bursts is where we were with gamma-ray bursts 30 years ago. We saw these things appearing and disappearing, but we didn’t know what they were or what caused them,” says Williams.

“Now we have firm evidence for the origins of both short and long gamma-ray bursts. With more data and more luck, I expect that we’ll eventually solve the mystery of fast radio bursts too,” he adds.

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Bite marks confirm gladiators fought lions at York

A recent study published in PLOS One has identified bite marks on human remains excavated from Driffield Terrace, a Roman cemetery on the outskirts of York, England.

Treasures of the Alanian culture found in Alkhan-Kala necropolis

Archaeologists have discovered an intact burial mound containing the tomb of an Alanian elite during excavations at Alkhan-Kala west of Grozny, Chechnya.

Significant archaeological discoveries near Inverness

Archaeologists have made several major discoveries at the site of the upcoming Old Petty Championship Golf Course at Cabot Highlands, near Inverness, Scotland.

Maya ritual offering found in Yucatán caves

Archaeologists from the National Institute of Anthropology and History (INAH) have recovered a globular ceramic pot in Zumpango Cave, part of the extensive Garra de Jaguar system.

Archaeologists find UAE’s first major Iron Age necropolis

The Department of Culture and Tourism in Abu Dhabi has announced the discovery of the first major Iron Age necropolis in the United Arab Emirates.

Ramses III inscription discovered in Jordan’s Wadi Rum

Jordan’s Ministry of Tourism and Antiquities has announced the discovery of an inscription bearing the seal of Ramses III in the Wadi Rum Reserve, Jordan.

Prince’s royal tomb discovered in Saqqara 

An archaeological mission led by Dr. Zahi Hawass has discovered the tomb of Prince Waser-If-Re, the son of King Userkaf, founder of Egypt’s Fifth Dynasty.

Artefacts from Genghis Khan era rediscovered

Researchers at the Siberian Federal University (SFU) have rediscovered a collection of artefacts from the era of Genghis Khan while cataloguing undocumented objects in the storerooms of the Kytmanov Yenisei Museum-Reserve.