Lost lithium destroyed by ancient stars

Related Articles

Lithium, the lightest metal, used in batteries and mood-stabilising drugs, is rarer than it should be. Models of the period after the Big Bang explain how it, hydrogen and helium were synthesised in nuclear reactions, before the universe cooled enough for the stars and planets that we see today to come into being.

Astronomers though think that about three times as much lithium was produced in that earliest epoch than remains today in the oldest stars in the galaxy, and the difference has proved hard to explain.

Now a group of scientists, led by Xiaoting Fu of the International School for Advanced Studies in Trieste, Italy, think they have the answer to this so-called ‘lithium problem’: it was destroyed and re-accumulated by these stars shortly after they were born. The team publish their work in Monthly Notices of the Royal Astronomical Society.

 

In the past astronomers have speculated on what might be responsible for the lithium deficit. Ideas included as yet unknown aspects of particle physics, nuclear physics or even new models of cosmology.

Fu’s team instead looked at how much lithium there would have been when a particular subset of the first long-lived stars formed, just a few hundred million years after the Big Bang. These are still around today, so provide astronomers with some insight into the history of the universe and how its composition has changed.

The stars have between 50 and 85% of the mass of the Sun, and have lives that are significantly longer, and are thought to remain stable on the so-called ‘main sequence’ for between 15 and 30 billion years. They are poor in most ‘metals’, which in astronomy means every element heavier than helium. The scientists modelled the way that these stars process lithium, starting with the early part of their lives when they are still contracting and heating up under the influence of gravity.

In that ‘pre-main sequence’ phase, the new model suggests that there is more mixing in the different layers of these objects. To put this in context, stars have a hot core, where nuclear fusion is converting hydrogen to helium, a cooler outer layer where convection cycles material from above the core to the surface and down again, and a surface where electromagnetic radiation (including light and heat) escapes into space.

The new work indicates that in this first phase of their lives, the low-mass stars have an extra mixing ‘overshooting’ at the base of the convection zone, where surface lithium is brought to the hot interior and almost completely destroyed.

Pre-main sequence stars are also surrounded by the residual gas and dust from which they formed. This cloud will over time be pulled on to the star, adding lithium to its surface. As the star ages, the convective zone becomes shallower, so material is no longer sent to the core, to some extent offsetting the earlier destruction of lithium.

Stars also shine brightly in ultraviolet light, and the ‘radiation pressure’ of this light eventually blows the disk materials away, stopping the star from accumulating more lithium. The stars then enter the main sequence and settle into a long period of stability. When we observe them now, between 10 and 12 billion years later, they show a constant abundance of lithium, which is about one third of the primordial level.

Fu comments: “Our work is a completely new approach to the lithium problem. The model not only may explain the loss of lithium in stars, but could also help explain why the Sun has fifty times less lithium than similar stars and why stars with planets have less lithium than stars on their own.”

In the next decade new observatories like the European Extremely Large Telescope (E-ELT) under construction in Chile should allow astronomers to look back at the first metal-poor stars as they formed, and confirm the rapid loss of lithium in the early Universe.

Royal Astronomical Society (RAS)

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Archaeologists Excavate 1,600-Year-Old Burial Containing Ornate Treasures

Archaeologists excavating a burial ground have discovered a grave containing ornate grave goods from the 5th century AD, a period of instability during the collapse of the Western Roman Empire.

Archaeologists Discover Ancient Settlements Associated With “Polish Pyramids”

Archaeologists conducting a detailed study of the area near the Kujawy megalithic tombs, dubbed the “Polish Pyramids”, have identified the associated settlements of the tomb builders.

Rocky Planet Discovered in Virgo Constellation Could Change Search For Life in Universe

A newly discovered planet could be our best chance yet of studying rocky planet atmospheres outside the solar system, a new international study involving UNSW Sydney shows.

Sungbo’s Eredo – The “Queen of Sheba’s Embankment”

Sungbo’s Eredo is one of the largest man-made monuments in Africa, consisting of a giant system of ditches and embankments that surrounds the entire ljebu Kingdom in the rain forests of south-western Nigeria.

Woolly Mammoths May Have Shared the Landscape With First Humans in New England

Woolly mammoths may have walked the landscape at the same time as the earliest humans in what is now New England, according to a Dartmouth study published in Boreas.

Prehistoric killing machine exposed

Judging by its massive, bone-crushing teeth, gigantic skull and powerful jaw, there is no doubt that the Anteosaurus, a premammalian reptile that roamed the African continent 265 to 260 million years ago - during a period known as the middle Permian - was a ferocious carnivore.

Noushabad – The Hidden Underground City

Noushabed, also called Oeei or Ouyim is an ancient subterranean city, built beneath the small town of Nushabad in present-day Iran.

10 British Iron Age Hill Forts

A hill fort is a type of earthworks used as a fortified refuge or defended settlement, located to exploit a rise in elevation for defensive advantage.

Popular stories

Noushabad – The Hidden Underground City

Noushabed, also called Oeei or Ouyim is an ancient subterranean city, built beneath the small town of Nushabad in present-day Iran.

Ani – The Abandoned Medieval City

Ani is a ruined medieval city, and the former capital of the Bagratid Armenian kingdom, located in the Eastern Anatolia region of the Kars province in present-day Turkey.

Interactive Map of Earth’s Asteroid and Meteor Impact Craters

Across the history of our planet, around 190 terrestrial impact craters have been identified that still survive the Earth’s geological processes, with the most recent event occurring in 1947 at the Sikhote-Alin Mountains of south-eastern Russia.

The Sunken Town of Pavlopetri

Pavlopetri, also called Paulopetri, is a submerged ancient town, located between the islet of Pavlopetri and the Pounta coast of Laconia, on the Peloponnese peninsula in southern Greece.