Date:

Unique tooth structure allowed predatory dinosaurs to efficiently crunch flesh and bone

The Tyrannosaurus rex and its fellow theropod dinosaurs that rampage across the screen in movies like Jurassic World were successful predators partly due to a unique, deeply serrated tooth structure that allowed them to easily tear through the flesh and bone of other dinosaurs, says new research from the University of Toronto Mississauga (UTM).

The research, published in the journal Scientific Reports, was conducted by Kirstin Brink, a post-doctoral researcher in the Department of Biology at UTM; Professor Robert Reisz of the Department of Biology and the UTM vice-principal of graduate studies; and colleagues at the Royal Ontario Museum (ROM) and the National Synchrotron Radiation Research Center in Taiwan.

- Advertisement -

Brink and her colleagues determined that this deeply serrated–or sawlike–tooth structure is uniquely common to carnivorous theropods such as T. rex and Allosaurus, and even one of the first theropods, Coelophysis. Other extinct animals had teeth that were superficially similar, but it was the special arrangement of tissues inside the tooth that strengthened and improved the function of the teeth. The deep serrations made them much more efficient at chomping on bones and ripping flesh of larger animals and reptiles, and allowed them to prosper for about 165 million years as fearsome, top predators.

The only reptile living today that has the same superficial tooth structure is the Komodo dragon, native to Indonesia. It, too, preys on larger animals.

“What is so fascinating to me is that all animal teeth are made from the same building blocks, but the way the blocks fit together to form the structure of the tooth greatly affects how that animal processes food,” Brink said. “The hidden complexity of the tooth structure in theropods suggests that they were more efficient at handling prey than previously thought, likely contributing to their success.”

She and her colleagues also found that the unique arrangement of tooth tissues did not develop in response to these carnivores chewing hard materials. They determined this by examining samples of dinosaur teeth that had not yet broken through the gums, as well as samples from mature dinosaur teeth. Unlike humans, reptiles grow new teeth throughout their lifetimes.

- Advertisement -

“What is startling and amazing about this work is that Kirstin was able to take teeth with these steak knife-like serrations and find a way to make cuts to obtain sections along the cutting edge of these teeth,” said Reisz. “If you don’t cut them right, you don’t get the information.

“This brought about a developmental explanation for the tooth formation; the serrations are even more spectacular and permanent.”

Brink and colleagues used a scanning electron microscope – a very powerful microscope — and a synchrotron – a microscope that allows the user to understand a substance’s chemical composition — to do a thorough examination and analysis of tooth slices from eight carnivorous theropods, including T. rex, Allosaurus, Coelophysis and Gorgosaurus. The samples came from various museums, including the ROM, the Canadian Museum of Nature in Ottawa, and the Royal Tyrrell Museum in Alberta.

Reisz noted that his research lab has focused on teeth in the context of their workings within the jaw, making possible a broader understanding of the value of this discovery.

UNIVERSITY OF TORONTO

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists discover burials from the Iron Age and Viking Era

Archaeologists from the State Historical Museums and Arkeologerna recently completed an investigation of a significant burial site in Linköping, Sweden.

Hidden fortune discovered in Czech countryside

A 7-kilogram treasure hoard has been discovered by hikers on Zvičina Hill, located in Třebihošť-Mostek, Czechia.

Pre-war Jewish district uncovered in Lublin

Archaeologists from the Lublin Voivodeship Conservator of Monuments have uncovered traces of Lublin’s pre-war Jewish district during construction works at Zamkowa and Podwale streets.

Ornately decorated sarcophagus unearthed in “City of Gladiators”

Excavations in Stratonikeia, located in the Yatağan district of Muğla in southwestern Türkiye, have unearthed a 2,000-year-old sarcophagus from the Roman Imperial Age.

The mystery of a 1940’s Ford Woody discovered on USS Yorktown shipwreck

During a recent expedition aboard NOAA Ship Okeanos Explorer for the Papahānaumokuākea ROV and Mapping project, NOAA Ocean Exploration and its partners discovered a 1940s Ford Woody on the wreck of the USS Yorktown.

Roman phallus found at frontier fortress

Excavations at Vindolanda near Hadrian’s Wall have unearthed a miniature phallus pendant.

Ancient underground chamber discovery in Cnoc Ard

A construction project in Cnoc Ard (Knockaird) on the Isle of Lewis has revealed a stone-built underground chamber, later identified by archaeologists as a Late Iron Age souterrain.

Caral burial unearthed at Áspero: Elite woman found remarkably preserved

Archaeologists from the Caral Archaeological Zone (ZAC), led by Dr. Ruth Shady Solís from the Ministry of Culture, have discovered a well-preserved burial at the Áspero archaeological site in Barranca Province, Peru.