Date:

Study finds Great Barrier Reef is an effective wave absorber

Novel research has found that the Great Barrier Reef is an extraordinarily effective wave absorber, despite large gaps between the reefs. This means that landward of the reefs, waves are mostly related to local winds rather than offshore wave conditions.

The waves break and reduce in height over reefs; this drives currents that are very important for the transport of nutrients and larvae. This reduction in wave height also has implications fore shoreline stability.

- Advertisement -

The Great Barrier Reef in Australia is the world’s largest coral reef system, extending 2,300 km alongshore. The reef matrix is a porous structure consisting of thousands of individual reefs, with gaps in between. The porosity varies in that it is much lower in the north where the continental shelf is narrow and there are extensive reef flats; and is greater in the south where the shelf reaches up to 300km wide and there are extensive lagoons.

Previously, there have been several studies investigating how individual refs in the Great Barrier Reef influence ocean waves. However, this was the first, comprehensive, large-scale study of the influence of an entire offshore reef system on ocean wave transmission. The researcher’s used a 16-year record of satellite altimeter measurements of wave heights.

Dr. Shari Gallop, Research Fellow in Geology and Geophysics at the University of Southampton, led the team, which included Dr. Ivan Haigh, also from the University of Southampton; Professor Ian Young, Vice-Chancellor of the Australian National University (ANU), Professor Roshanka Ranasinghe, Professor of Climate Change Impacts and Coastak Risk (UNESCO-IHE, Deltaresm ANU), and Dr. Tom Durrant (Bureau of Meterology, Australia).

Great Barrier Reef Coral: WikiPedia
Great Barrier Reef Coral: WikiPedia

The intention was to see how wave height reduction is influenced by the porosity of the reef matrix, sea level and wind speed. Dr. Gallop says: “There was no evidence that in less porous areas wave heights are lessened. This is because individual reefs, like islands, cast a ‘wave shadow’ over a large area, so that a matrix of individual reefs is remarkably efficient at reducing waves.”

- Advertisement -

Dr. Haigh adds: “As sea level varies, due to tides and storm surges, the submergence of the reef in water also varies. Wave heights are not strongly affected by water level over the reef matrix.”

Professor Young says: “A number of previous studies have investigated the attenuation (height reduction) of ocean waves as they spread across individual coral reefs. This research is unique as it looks at the impact of a large-scale reef matrix, such as the Great Barrier Reef, on wave height. Such studies are important in providing wave climate information for physical, biological and planning processes in such areas.”

This new research, published in Coral Reefs, has crucial implications for wave modeling near reef systems. This is due to models that consider individual reefs only may underestimate the wave reduction potential of a full reef matrix.

Professor Ranasinghe comments: “Plans are under-way to investigate the wave attenuation characteristics over the reef in more detail, using sophisticated numerical modeling. It is of critical importance to know the potential impacts of climate change effects, such as sea level rise and variations in wave conditions, on wave attenuation and current circulation on the Great Barrier Reef. This will aid in the sustainable management of this natural wonder and the surrounding marine national park.”

 

 

 

 

Contributing Source: University of Southampton

Header Image Source: WikiPedia

 

 

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Lost treasures from Emperor’s tomb recovered

For the first time since 1872, rare funerary objects believed to have come from the Daisenryo Kofun have been recovered.

Submerged thermal baths found in Gulf of Naples 

Archaeologists have discovered a preserved Roman bathhouse in the partially submerged ruins of Baiae on the northwest shore of the Gulf of Naples.

Viking-Age hoard reveals trade between England and the Islamic World

A Viking-Age silver hoard unearthed in Bedale, North Yorkshire, is providing new insights into wealth and trading links between England and the Islamic World.

Exploration of Grodziec Forest District reveals three treasure hoards

In the quiet woods near Kalisz, Poland, a group of amateur archaeologists uncovered not one, but three extraordinary treasures over the span of just five weeks this summer.

Ancient bipyramidal ingots found submerged in Sava River

A large cache of bipyramidal ingots has been discovered in the Sava River in the Posavina Canton, Bosnia and Herzegovina.

Rare Migration Period brooch unearthed in Lapland

A rare Migration Period brooch has been discovered in Kemi, Lapland.

Unparalleled Bronze Age discovery

Detectorists from the Kociewskie Poszukiwacze Association have discovered a perfectly preserved Bronze Age bracelet, described by experts as unparalleled.

British Bronze Age sickle unearthed in Lower Seine Valley

Archaeologists from the National Institute for Preventive Archaeological Research (INRAP) have announced the discovery of a Bronze Age sickle in France’s Lower Seine Valley.