Iron preserves, hides ancient tissues in fossilized remains

Related Articles

Related Articles

New research from North Carolina State University shows that iron may play a role in preserving ancient tissues within dinosaur fossils, but also may hide them from detection. The finding could open the door to the recovery of more ancient tissues from within fossils.

Mary Schweitzer, an NC State paleontologist with a joint appointment at the N. C. Museum of Natural Sciences, first announced the surprising preservation of soft tissues in a T. rex fossil in 2005. Her subsequent work identified proteins in the soft tissue that seemed to confirm that the tissue was indeed T. rex tissue that had been preserved for millions of years. But the findings remained controversial in part because no one understood the chemical processes behind such preservation.

Schweitzer’s latest research shows that the presence of hemoglobin – the iron-containing molecule that transports oxygen in red blood cells – may be the key to both preserving and concealing original ancient proteins within fossils. Her results appear in Proceedings of the Royal Society B.

“Iron is necessary for survival, but it’s also highly reactive and destructive in living tissues, which is why our bodies have proteins that transport iron molecules to where they are needed but protect us from unwanted reactions at the same time,” Schweitzer says. “When we die, that protective mechanism breaks down and the iron is turned loose on our tissues – and that destructive process can act in much the same way formaldehyde does to preserve the tissues and proteins.”

Hemoglobin seems to be the key. Both birds and crocodiles, the dinosaur’s closest living relatives, have large, nucleated red blood cells. Therefore they also have more hemoglobin per cell than mammals. If dinosaur blood cells were similar to either one of those species, which seems likely, then their blood cells would also contain much more hemoglobin than human cells, amplifying iron’s preservative effect on the tissues. If the hemoglobin were contained in a bone in a sandstone environment, keeping it dry and insulated from microbes, preservation becomes more likely.

Schweitzer and her team noticed that iron particles are intimately associated with the soft tissues preserved in dinosaurs. But when they chelated – or removed the iron from – soft tissues taken from a T. rex and aBrachyolophosaurus, the chelated tissues reacted much more strongly to antibodies that detect the presence of protein, suggesting that the iron may be masking their presence in these preserved tissues. They then tested the preservation hypothesis by using blood vessels and cells taken from modern ostrich bone. They soaked some of these vessels in hemoglobin taken from red blood cells, while placing other vessels in water. Two years later, the hemoglobin-treated soft vessels remained intact, while those soaked in water degraded in less than a week.


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

“We know that iron is always present in large quantities when we find well-preserved fossils, and we have found original vascular tissues within the bones of these animals, which would be a very hemoglobin-rich environment after they died,” Schweitzer says. “We also know that iron hinders just about every technique we have to detect proteins. So iron looks like it may be both the mechanism for preservation and the reason why we’ve had problems finding and analyzing proteins that are preserved.”

Header Image : Albertosaurus : Wiki Commons

Contributing Source : North Carolina State University

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Suggests the Mystery of The Lost Colony of Roanoke Solved

The Roanoke Colony refers to two colonisation attempts by Sir Walter Raleigh to establish a permanent English settlement in North America.

Drones Map High Plateaus Basin in Moroccan Atlas to Understand Human Evolution

Researchers from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) have been using drones to create high-resolution aerial images and topographies to compile maps of the High Plateaus Basin in Moroccan Atlas.

The Kerguelen Oceanic Plateau Sheds Light on the Formation of Continents

How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory.

Ancient Societies Hold Lessons for Modern Cities

Today's modern cities, from Denver to Dubai, could learn a thing or two from the ancient Pueblo communities that once stretched across the southwestern United States. For starters, the more people live together, the better the living standards.

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Popular stories