Date:

Technology brings new life to the study of diseases in old bones

Credit : University of Manchester

- Advertisement -

A study led by The University of Manchester has demonstrated that new technology that can analyse millions of gene sequences in a matter of seconds is an effective way to quickly and accurately identify diseases in skeletons.

Professor Terry Brown, working in partnership with Professor Charlotte Roberts from Durham University, used a next generation sequencing approach, including hybridization capture technology, to identify tuberculosis genes in a 19th century female skeleton found in a crypt in Leeds.

Their study is part of wider research into the identification of strains of TB in skeletons dating from 100 AD to the late 19th century. It’s hoped that understanding how the disease has evolved over time will help improve treatments and vaccines. TB rates have been increasing around the world, and it’s estimated that one third of the world’s population has latent TB. After HIV it kills more people than any other infectious disease.

Certain strains of TB affect the sufferer’s bones, especially in the spine. The marks made by the disease remain evident on the bones long after the person’s death. It’s this evidence that Professor Roberts used to find suitable skeletons to screen for tuberculosis genes.

She sourced 500 skeletons from across Europe that showed evidence of TB dating from the Roman period to the 19th century. Bone samples from these skeletons were screened for TB DNA, and of those 100 were chosen for this particular study.

- Advertisement -

Professor Roberts explains: “So many skeletons were needed as it’s very hard to tell if any DNA will have survived in the bones. You don’t really know if there will be any present until you start screening and in the past that has been a lengthy process.”

Professor Terry Brown then took on the search for TB DNA in the skeletons. Each small section of bone was ground up and placed in a solution. That was then put in a special machine which captured every gene sequence in the DNA. Millions of sequences were captured and sent to a computer.

Professor Brown and his team then searched for the gene sequences for tuberculosis. Because it is a bacterial disease the bacteria’s DNA can remain in the bones after death.

Talking about the process Professor Brown said: “Previously we could only scan the bone sample for specific genes. We wouldn’t see everything that was there which meant we could easily miss other genetic information that could be relevant. Using the hybridization screening meant we could search for different strains of TB, not just one.”

About 280 bits of sequence in the DNA were found to match known tuberculosis genes. The data placed the historic strain of TB in a group that is uncommon today, but was known to have been present in North America in the 19th century. In fact it was found to be very similar to a strain recorded in a tuberculosis patient in New York in 1905.

Discussing the results Professor Brown says: “The fact that this particular strain of TB was found in both North America and in the skeleton from 19th century Yorkshire is not necessarily unusual. There were many migrants from Britain to America during the 19th century so it makes sense that TB strains were spread.”

One of the downsides of hybridization capture identified by the researchers in this study was that it is possible to mistakenly identify DNA. Because it looks at all the sequences across the sample it may identify DNA that isn’t from the bone, but actually from the surrounding soil or environment where the skeleton was buried.

In this study the results were checked using the more traditional method of polymerase chain reactions and were found to be accurate. The researchers concluded that using hybridization capture and next generation gene sequencing is an accurate and effective way to obtain detailed genotypes of ancient varieties of tuberculosis. It could potentially be used to study other diseases. Their findings have been published in the journal The Proceedings of the National Academy of Sciences.

Professor Roberts says: “We’re really pleased with the results of this study and that the technology works. It will save a lot of time in the future. We now hope to publish more of the huge amounts of data we have acquired from the sequencing”

The scientists hope to compare their results with similar studies being done in America to assess what tuberculosis strains have been identified there. They’re interested in studying which strains were brought to the country by migrants and what impact those had on the native strains of the disease.

Contributing Source : The University of Manchester

HeritageDaily : Archaeology News : Archaeology Press Releases

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Neo-Assyrian winged bull could be largest ever found

Archaeologists have unearthed the remains of what could be the largest known Neo-Assyrian lamassu – a protective deity depicting a winged bull with a human head.

Mollusc shells are unlocking the secrets of Ancient Egypt’s Saqqara necropolis

Mollusc shells unearthed during excavations at the Saqqara necropolis are offering new insights into the customs and daily life of the region’s ancient inhabitants.

5,000-year-old Dolmen complex discovered in Teba

Archaeologists from the University of Cádiz have discovered a monumental dolmen complex dating back more than 5,000-years-ago in the Spanish town of Teba in Malaga.

Archaeologists search for missing WWII Pilot at P-47 crash site in Essex

A six-week recovery project is underway in North Essex to investigate the crash site of a US Army Air Forces P-47 Thunderbolt that went down during World War II.

Megalith “dragon stones” were likely part of an ancient water cult

A new study, published in the journal npj suggests that the mysterious dragon stones found across the highlands of Armenia may relate to water veneration practices of communities over six millennia ago.

Archaeologists investigate sacred Piedra Letra monument

Archaeologists from the National Institute of Anthropology and History (INAH) have conducted a study of Piedra Letra, located on a hill overlooking Huehuetónoc in the Mexican state of Guerrero.

Monument linked to Iberian star mythology discovered in Jódar

Archaeologists from the Research Institute for Iberian Archaeology (IAI) at the University of Jaén (UJA) have discovered a monument connected to the sun and other celestial bodies within Iberian mythology.

Project is restoring Costa Rica’s mysterious stone spheres

A joint team of specialists from Costa Rica and Mexico are restoring three stone spheres at the Finca 6 Museum Site in Palmar de Osa.